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14 An example introducing new features in PROC UCM

14.1 Introducing the dataset for hourly traffic counts
Copenhagen is a city with many bicycles. People of all ages use the bike to reach for work, studies
or leisure time activities independent of weather and the time of day. Bicycling is safe and fast
because of bicycle roads along almost all major streets.

In this example the traffic is counted at Fredensbro (Danish "bro" means "bridge") which con-
nects Nørrebro where many people live with the inner city of Copenhagen where many people
work or study and where many activities like theatres, bars, dancing places, etc. are situated.
Other people use the bikes for longer trips and just pass Fredensbro on their way.

This example uses data on the number of passing bicycles every hour in a period from January
1’st the hour from 00 to 01 (that is the first hour of the new year) and to March 19’th a total of 1872
observations in the winter and early spring 2014. The number of passing bicycles are counted by
some automatic device. Such datasets are available for many streets of Copenhagen.

The dataset is named "cycling".

14.2 Seasonals in the dataset
The series are plotted at Figure 1 for just two weeks in order to see the details. The period is from
Monday February 24’th to Sunday March 9’th. where no special holidays are present. Figure 2
and 3 are more detailed plots of Thursday February 27’th and Saturday March 1’st. The two series
on the plots are the number of passing bicycles "to the city" and "from the city". It seems that the
number of cyclists to the city is largest in the morning hours while the number of cyclists away
from the city are largest in the afternoon hours. This is easily understood as a traffic pattern of
people pending to and from work or studies.
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Figure 1: The entire time series
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Figure 2: Thursday 27’th February
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Figure 3: Saturday 1’st March
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A weekday effect is of course present as most people are away from work and studies Saturday
and Sunday - however many go for shopping, but a little later in the morning than on ordinary
working days. Night life especially Friday night is also visible as the numbers of cyclists are large
in the hours late Friday evening and early Saturday morning.

Looking at the plots of the series it is obvious that the level is rather constant and no trend is
seen. When it comes to modelling by PROC UCM it is expected that a slope component is super-
fluous and that a level component of course is present but the level component variance is probably
insignificant and could be excluded. The main problem is to model the seasonal structure. It is
clear that a weekly component should be included in order to model the effect of working days and
weekend days. Also an hourly effect is necessary as the traffic changes over the hours of the day.

Some autocorrelation is to be expected in this example using hourly observations. An argu-
ment for negative autocorrelation is that very few passes the bridge in the same direction in two
consecutive clock hours; that is if you pass the bridge you probably will not go back soon after and
then pass the bridge again. This means that if for some reason many people are one hour earlier
than usual leading to high count one hour, they have crossed the bridge so not so many will pass the
hour after. On the other hand it is possible that bad weather or traffic problems could increase or
decrease the number of passing cyclists for many consecutive hours which could explain positive
autocorrelation.

One possibility is to apply a seasonal component for all 24 × 7 = 168 hours a week. In principle
this requires 168 seasonal dummies — which of course are much too many parameters. However,
it is possible to reduce the number of parameters to a much smaller number by application of
seasonal harmonics as in the Arctic ice example, Chapter 13. Another possibility is to apply a
blockseason component which allows for a daily cycle of 24 hours to be embedded in a seven day
weekly cycle. This possibility was introduced in PROC UCM by November 2018.

In the following all three possibilities are applied to the series of number of cyclists to the
inner-city.

14.3 A length 168 seasonal component for each hour a week by dummies
As a benchmark model the following code just includes a constant level and dummies for the 168
hours a week. Both the level variance and the variance for the seasonal dummies are fixed as zero.

PROC UCM d a t a = s a s t s . c y c l i n g ;
i d d a t e t i m e i n t e r v a l = hour ;
model f r o m _ t h e _ c i t y ;
i r r e g u l a r ;
l e v e l v a r i a n c e =0 n o e s t ;
s e a s o n l e n g t h =168 v a r i a n c e =0 n o e s t ;
e s t i m a t e p l o t =( p a n e l ) ;
f o r e c a s t l e a d =168 p l o t = f o r e c a s t s ;

5



Figure 4: Forecast a week ahead using all 168 hourly dummies. Note that March 22-23 are week-
end days
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run ;

The output is of course too long to be printed here. The main point is that the huge amount of
parameters gives a very precise picture of the hourly seasonal structure for a whole week. This is
best seen by the forecast plot, Figure 4, where forecasts for the next 168 observations are plotted.
All regular weekly patterns are seen, for instance it is obvious that the number of cyclists the nights
after Friday and Saturday are larger than the nights before ordinary working days.

This model only includes one stochastic component, the irregular component,which has an es-
timated variance 10895. Of course it is possible, at least in principle, to include more stochastic
components like a time varying level and a time varying slope. But the estimation and production
of graphical output is rather time consuming, and it is often superfluous if the analysis does not
point in the direction of specific extensions of the model.
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In this example it is natural in some way to extend the model with an autoregressive term.
This is done by extending the irregular statement by the p=1 option. The resulting estimated
autoregressive parameter is ϕ1 = 0.85 and the irregular component variance is reduced to 3125
from 10895 in the above model. But this code extends the computer time to more than a minute,
so no further extensions is tried here.

14.4 A length 168 seasonal component for each hour a week using harmon-
ics

Exactly the same model fit is obtained if the seasonal components instead of dummy variables are
parametrized by harmonics. The fit is the same and the number of parameters to be estimated are
also the same. The main advantage of this approach is the possibility to choose only the most im-
portant harmonics in a model and exclude the rest. In this way the number of important parameters
could be reduced significantly.

The basic model is fitted by the code below with an autoregressive term included. The only dif-
ference is the seasonal statement where the method is changed from the default dummy parametriza-
tion to the parametrization by harmonics and the option print=harmonics gives a table showing the
significance of all 168/2 = 84 harmonics. This table is saved as a data set named all_harmonics.
This dataset is sorted by significance and printed in the last part of the code.

PROC UCM d a t a = s a s t s . c y c l i n g ;
i d d a t e t i m e i n t e r v a l = hour ;
model f r o m _ t h e _ c i t y ;
i r r e g u l a r p =1;
l e v e l p l o t =smooth v a r =0 n o e s t ;
s e a s o n l e n g t h =168 t y p e = t r i g p r i n t = ha rmon ic s v a r =0 n o e s t ;
e s t i m a t e p l o t =( p a n e l ) ;
ods o u t p u t SeasonHarmonics = a l l _ h a r m o n i c s ;
run ;
p roc s o r t d a t a = a l l _ h a r m o n i c s o u t = s o r t ;
by d e s c e n d i n g c h i s q ;
run ;
p roc p r i n t d a t a = s o r t ;
v a r harmonic p e r i o d c h i s q ;
run ;

The first ten lines of table of the harmonics from the procedure output is shown in the Table.

Harmonic Analysis of Trigonometric Seasons (Based on the Final State)

Name Season Length Harmonic Period Chi-Square DF Pr > ChiSq

Season 168 1 168.00000 92.40 2 <.0001

Season 168 2 84.00000 57.77 2 <.0001
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Harmonic Analysis of Trigonometric Seasons (Based on the Final State)

Name Season Length Harmonic Period Chi-Square DF Pr > ChiSq

Season 168 3 56.00000 1.75 2 0.4169

Season 168 4 42.00000 6.83 2 0.0328

Season 168 5 33.60000 111.51 2 <.0001

Season 168 6 28.00000 189.73 2 <.0001

Season 168 7 24.00000 8150.51 2 <.0001

Season 168 8 21.00000 87.99 2 <.0001

Season 168 9 18.66667 91.33 2 <.0001

Season 168 10 16.80000 8.79 2 0.0123

The 25 most important harmonics from the sorted table are shown in the Table.

Obs Harmonic period ChiSq

1 7 24.00000 8150.51

2 21 8.00000 3543.76

3 35 4.80000 2479.17

4 22 7.63636 494.56

5 15 11.20000 460.98

6 49 3.42857 458.12

7 20 8.40000 439.54

8 34 4.94118 410.22

9 13 12.92308 366.59

10 42 4.00000 301.38

11 19 8.84211 289.79

12 16 10.50000 250.63

13 23 7.30435 240.32

14 63 2.66667 229.55

15 14 12.00000 225.08

16 27 6.22222 207.24

17 36 4.66667 205.37

18 6 28.00000 189.73

19 26 6.46154 169.34

20 37 4.54054 132.45

21 5 33.60000 111.518



Obs Harmonic period ChiSq

22 33 5.09091 110.52

23 12 14.00000 97.55

24 28 6.00000 94.58

25 1 168.00000 92.40

The by far most significant harmonic is 7 which corresponds to period length 168/7 = 24, that
is the variation within the 24 hours of a day. The next harmonics are either multiples of 7 or very
close to multiples of 7, so they serve to modify the shape of the sinusoid as for instance the ampli-
tude of the daily variation is less for Saturdays and Sundays than for ordinary working days. To
study this behaviour using harmonics is called spectral analysis and is not treated any further in
this note.

We use simply this table to pick out harmonics with high significance in order to reduce the
number of parameters to estimate by excluding less significant harmonics.

In the next code this is done by specification of which harmonics to keep by the option keeph=.
In the code seasonal harmonics for 7, 14, . . . , 70 are applied and the nearby, plus-minus 1 and 2
harmonics for 5, 6, 8, 9, . . ., 45, 46, 48, 49 are also included. Note that all theses numbers are
easily coded using notation as keeph=7 to 70 by 7. Moreover harmonics 1 and 2 are included to
model long term behaviour. In total 41 harmonics out of the 84 possible harmonics are included.

These choices of which harmonics to include are of course rather arbitrary, as several highly
significant harmonics are left out. But most of the significant harmonics from the table are included
and the list only includes a few harmonics with small χ2-square statistics.

PROC UCM d a t a = s a s t s . c y c l i n g ;
i d d a t e t i m e i n t e r v a l = hour ;
model f r o m _ t h e _ c i t y ;
i r r e g u l a r p =1;
l e v e l v a r =0 n o e s t ;
s e a s o n l e n g t h =168 t y p e = t r i g p r i n t = ha rmon ic s v a r =0 n o e s t
keeph =1 2 keeph =7 t o 70 by 7
keeph =6 t o 54 by 7 keeph =8 t o 58 by 7
keeph =5 t o 47 by 7 keeph =9 t o 51 by 7 ;
e s t i m a t e p l o t =( p a n e l ) e x t r a d i f f u s e =168;
f o r e c a s t l e a d =168 e x t r a d i f f u s e =168 p l o t = f o r e c a s t s ;
run ;

The option extradiffuse=168 tells that the first week of 168 observations is excluded from the
calculations of forecasts, prediction errors and forecasts as the first predictions have large vari-
ances, which disturbs the overall picture.

9



Figure 5: Forecast a week ahead using 41 harmonics. Note that March 22-23 are weekend days
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In the table of estimated parameters the variance of the irregular component is 3576 which of
course is much larger than 3125 which we found if all 84 harmonics are included in the model.
This tells that the 43 excluded harmonics have a statistically significant contribution to the model
fit.

Final Estimates of the Free Parameters

Component Parameter Estimate Approx Std Error t Value Approx Pr > |t|

Irregular Error Variance 3576.40560 119.58321 29.91 <.0001

Irregular AR_1 0.83297 0.01325 62.86 <.0001

The forecast for the 168 hours of the following week is given in Figure 5. This graph is very
close to the previous graph, Figure 4, so in practice the reduction of harmonics from 84 to 41 is
unimportant. It is to believe that the number of harmonics could be reduced much further.

The model fit is acceptable as all autocorrelations are close to zero, even if some autocorrela-
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Figure 6: Diagnostic plots

Residual Diagnostics for from_the_city

0 10 20 30 40 50 60

Lag

-1.0

-0.5

0.0

0.5

1.0

P
A

C
F

Two Standard Errors

0 10 20 30 40 50 60

Lag

-1.0

-0.5

0.0

0.5

1.0

A
C

F

Two Standard Errors

-2 0 2

Quantile

-200

0

200

400

R
es

id
u

al

-210 -120 -30 60 150 240 330 420

Residual

0

5

10

15

20

25

P
er

ce
n

t

-210 -120 -30 60 150 240 330 420

Residual

0

5

10

15

20

25

P
er

ce
n

t

Kernel
Normal

tions are significant because of the large number of observations, see Figure 6.

14.5 A blockseasonal component for seven days a week and 24 hours sea-
sonal component for the hours a day

Another way of reducing the number of dummy variables from the 168 potential dummies is to
exploit that the 24 hours a day are embedded in the seven days a week. This could be coded rather
intuitively by a blockseasonal statement.

The following code includes hourly dummies for the 24 hours a day and daily dummies for
seven days a week. These two sets of dummies are then combined in the final model. This gives
a total of 31 dummies, which is 29 free parameters to be estimated as each set of dummies are re-
stricted to sum to zero. All estimated components are saved in the new dataset, named predictions,
by the option outfor=predictions in the forecast statement. The DATA step and the application of
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PROC SGPLOT gives Figure 8 which will be discussed later.

PROC UCM d a t a = s a s t s . c y c l i n g ;
i d d a t e t i m e i n t e r v a l = hour ;
model f r o m _ t h e _ c i t y ;
i r r e g u l a r p =1;
l e v e l v a r i a n c e =0 n o e s t ;
s e a s o n l e n g t h =24 t y p e = t r i g v a r i a n c e =0 n o e s t p l o t =smooth ;
b l o c k s e a s o n n b l o c k s =7 b l o c k s i z e =24 v a r i a n c e =0 n o e s t p l o t =smooth ;
e s t i m a t e p l o t =( p a n e l ) p l o t = r e s i d u a l ;
f o r e c a s t l e a d =168 p l o t = f o r e c a s t s
o u t f o r = p r e d i c t i o n ;
run ;

d a t a p r e d i c t i o n _ 1 ;
s e t p r e d i c t i o n ;
i f hour ( t i m e p a r t ( d a t e t i m e ) ) i n ( 7 , 8 )
t h e n morning= f r o m _ t h e _ c i t y ;
i f hour ( t i m e p a r t ( d a t e t i m e ) ) i n ( 0 , 2 2 , 2 3 )
t h e n n i g h t _ l i f e = f r o m _ t h e _ c i t y ;
run ;

p roc s g p l o t d a t a = p r e d i c t i o n _ 1 ;
s c a t t e r x= d a t e t i m e y= f r o m _ t h e _ c i t y / ;
s e r i e s x= d a t e t i m e y= f o r e c a s t ;
s c a t t e r x= d a t e t i m e y=morning /

MARKERATTRS=( c o l o r = r e d symbol= C i r c l e F i l l e d ) ;
s c a t t e r x= d a t e t i m e y= n i g h t _ l i f e /

MARKERATTRS=( c o l o r = g r e e n symbol= C i r c l e F i l l e d ) ;
where d a t e p a r t ( d a t e t i m e ) >mdy ( 3 , 6 , 2 0 1 4 )

and d a t e p a r t ( d a t e t i m e ) <mdy ( 3 , 1 1 , 2 0 1 4 ) ;
run ;

The model fit is poor as the variance of the irregular component is large, 11812, as seen in
table of estimated parameters. Even if the autoregressive parameter is maintained in the model,
this variance is much larger than the variance in the previous models.

Final Estimates of the Free Parameters

Component Parameter Estimate Approx Std Error t Value Approx Pr > |t|

Irregular Error Variance 11812 389.22922 30.35 <.0001

Irregular AR_1 0.85604 0.01379 62.09 <.0001

From a time series point of view the model fit is poor as the residuals are autocorrelated as seen
12



Figure 7: Diagnostic plots
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from the Figure 7 such that the first order autoregression is not sufficient and many more terms are
needed. Moreover the histogram and the Q-Q plot tell that the distribution of the residuals is heavy
left tailed as some residuals are less than -400 while the rest are larger than -275.

The reason for the poor fit is clearly seen from Figure 8 which is produced by the last PROC
SGPLOT in the code above. Here forecasts and observations are plotted for four days, Friday
March 7’th to Monday March 11’th, so the effect of a weekend is seen in detail. The red filled
dots are the two morning hours 7 and 8 AM where mainly cyclists pass on ordinary work days
while very few cyclists pass in these morning hours in the weekend. Moreover the green dots at 10
and 11 PM and also the first hour after midnight make clear that the traffic at night is different the
nights after Friday and Saturday compared to the nights before working days.

The plot, Figure 8, spells out clearly that the seasonal structure of the 24 hours within a day is
not constant for all seven days a week.
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Figure 8: Forecasts and and model plot. Note that March 14. and 15. are weekend days
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To conclude, the idea of overlaying two seasonals, one for the days a week and one for the
variation within a day, is not working for the present data set. An application of 168 dummies
or 84 harmonics is preferable as in Section 14.3. If one wants to reduce the number of estimated
parameters the number of seasonals should be drastically reduced by deleting important harmonics.
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