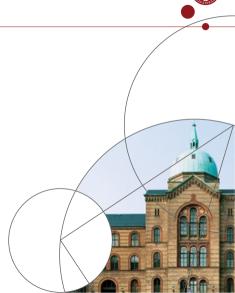


The anatomy of an economic model

Johannes Wohlfart



Plan for the lecture

- 1 Present the anatomy of an economic model
- Application

Introduction

- Different to Micro I, throughout Micro II we look at a range of different economic models
- We now discuss the anatomy of an economic model (a framework to put different models into) in order to:
 - Clarify the structure, similarities and differences of models
 - Help to understand the solution of models
 - A guide but not a formal mathematical breakdown

Parts of an economic model

- A model is a collection of definitions and assumptions
 - Technology and Preferences
 - Exogenous variables / functions / relationships: Utility functions, production technology, initial endowments, budget sets, etc.
 - Endogenous variables: Consumption, production and sales, labor supply, etc.
 - 2 Behavior and Equilibrium
 - Agents' decisions: Maximizing what? With regard to what? What is taken as given? ⇒ Solution provides conditional behavior
 - Equilibrium conditions: What should apply such that the agents' decisions are in an equilibrium with each other?

A model's anatomy

Technology and Preferences	Behavior and Equilibrium
Exogenous functions / var. / relationships:	The decisions of the agents:
Endogenous variables:	← Conditional behavior:
	Equilibrium Conditions:

Example: Edgeworth economy

- Edgeworth economy with 2 goods and 2 consumers with Cobb-Douglas preferences:
 - Two agents: A and B; two goods, 1 and 2; consumption plans: (x_1^A, x_2^A) , (x_1^B, x_2^B)
 - Cobb-Douglas utility functions: $u_A(x_1^A, x_2^A) = (x_1^A)^{\alpha} (x_2^A)^{1-\alpha}$ and $u_B(x_1^B, x_2^B) = (x_1^B)^{\beta} (x_2^B)^{1-\beta}$
 - Endowments: $(e_1^A, e_2^A), (e_1^B, e_2^B)$
 - Possible states (sometimes only implicitly assumed):

$$e_1^A + e_1^B = x_1^A + x_1^B$$
 and $e_2^A + e_2^B = x_2^A + x_2^B$
 $x_1^A, x_2^A, x_1^B, x_2^B \ge 0$

Example: Edgeworth economy

Technology and Preferences

Behavior and Equilibrium

Exogenous func./var./relationships:

$$u_{A}(x_{1}^{A}, x_{2}^{A}) = (x_{1}^{A})^{\alpha} (x_{2}^{A})^{1-\alpha}$$

$$u_{B}(x_{1}^{B}, x_{2}^{B}) = (x_{1}^{B})^{\beta} (x_{2}^{B})^{1-\beta}$$

$$\alpha, \beta, e_{1}^{A}, e_{2}^{A}, e_{1}^{B}, e_{2}^{B}$$

Restrictions on possible states

Endogenous variables:

$$(x_1^A, x_2^A), (x_1^B, x_2^B)$$

The decisions of the agents:

→ Conditional behavior:

Equilibrium Conditions:

Interesting analyses are possible already

- Only left side filled: No assumptions about behavior and equilibrium yet
- Important point: We can already answer interesting questions:
 - What (possible) states are efficient? (Contract curve)
 - Comparative statics: how does the contract curve change if β increases (or if other parameters change)

Example: Walras equilibrium in an Edgeworth econonomy

- Standard assumptions about behavior and equilibrium: Walras equilibrium
 - Prices p_1 , p_2 are taken as given by the agents
 - The agents choose consumption by maximizing utility given prices and budget condition, e.g. for A:

$$\max_{\substack{x_1^A, x_2^A \\ x_1^A, x_2^A}} u_A(x_1^A, x_2^A) \quad \text{s.t.} \quad p_1 x_1^A + p_2 x_2^A = p_1 e_1^A + p_2 e_2^A$$

giving rise to demand functions: $x_1^{A*}(p_1,p_2), x_2^{A*}(p_1,p_2)$

Prices adjust such that there is equilibrium in the goods markets:

$$\begin{aligned} x_1^{A*}(p_1^*, p_2^*) + x_1^{B*}(p_1^*, p_2^*) &= e_1^A + e_1^B \\ x_2^{A*}(p_1^*, p_2^*) + x_2^{B*}(p_1^*, p_2^*) &= e_2^A + e_2^B \end{aligned}$$

Example: Walras equilibrium in an Edgeworth economy

Technology and Preferences

Exogenous func./var./relationships:

$$u_{A}(x_{1}^{A}, x_{2}^{A}) = (x_{1}^{A})^{\alpha} (x_{2}^{A})^{1-\alpha}$$

$$u_{B}(x_{1}^{B}, x_{2}^{B}) = (x_{1}^{B})^{\beta} (x_{2}^{B})^{1-\beta}$$

$$\alpha, \beta, e_{1}^{A}, e_{2}^{A}, e_{1}^{B}, e_{2}^{B}$$

Restrictions on possible states

Endogenous variables:

$$(x_1^{\overline{A}}, x_2^{\overline{A}}), (x_1^{\overline{B}}, x_2^{\overline{B}})$$

 p_1, p_2

Behavior and Equilibrium

The decisions of the agents:

A maximizes $u_A(x_1^A, x_2^A)$ wrt.

 (x_1^A, x_2^A) given budget and prices

B maximizes $u_B(x_1^B, x_2^B)$ wrt.

 (x_1^B, x_2^B) given budget and prices

← Conditional behavior:

$$x_1^{A*}(p_1, p_2), x_2^{A*}(p_1, p_2)$$

 $x_1^{B*}(p_1, p_2), x_2^{B*}(p_1, p_2)$

Equilibrium Conditions:

$$x_1^{A*}(p_1^*, p_2^*) + x_1^{B*}(p_1^*, p_2^*) = e_1^A + e_1^B$$

 $x_2^{A*}(p_1^*, p_2^*) + x_2^{B*}(p_1^*, p_2^*) = e_2^A + e_2^B$

Solution and further analysis

- From the decision assumptions we can derive the demand functions for A
 and B
- Along with the equilibrium condition, this gives the Walras equilibrium ⇒ the model's prediction of what is going to happen
- Can also answer other interesting questions
 - Compare the Walras equilibrium with the efficient states (first welfare theorem)
 - Comparative statics: how does the equilibrium price change if e_1^A increases? What if e_1^B increases?

Socrative Quiz question

Think of the principal agent model in slides 5a in which the principal tries to distinguish between high and low productivity workers. Which of the following is *not* exogenous in the model?

- a) q (fraction of high productivity workers)
- b) $u_H(w_H, e_H)$ (utility function of the high type)
- c) r_L Outside option of the low type
- d) e_L Effort of the low type
- e) f(e) Product of effort

Example: Monopoly with constant MC

- Simple monopoly model from previous monopoly Slides:
 - Price and quantity, p and x
 - Inverse demand: p(x)
 - Cost Function $C(x) = c \cdot x$

Monopoly with constant MC I

Technology and Preferences	Behavior and Equilibrium
Exogenous func./var./relationships:	The decisions of the agents:
$p(x), C(x) = c \cdot x$	
c	
(implicitly also $x \ge 0$)	
Endogenous variables: x,p	→ Conditional behavior: Equilibrium Conditions:

Interesting analyses possible already

- Left side only filled: No assumptions about behavior and equilibrium yet
- But again: We can already answer interesting questions:
 - What will the profit and consumer surplus be if 5 units are sold at a price of 4?
 - What is the efficient level for the quantity traded?
 - Comparative statics: how does the efficient level change if c rises?

Monopoly with constant MC II

Technology and Preferences	Behavior and Equilibrium
Exogenous func./var./relationships:	The decisions of the agents:
$p(x), C(x) = c \cdot x$	Profit maximization: $\max_{x,p} p \cdot x - C(x)$
c	s.t. p = p(x)
(implicitly also $x \ge 0, p \ge 0$)	
Endogenous variables: x,p	\hookrightarrow Conditional behavior: The monopolist's quantity choice x^* and price choice $p^* = p(x^*)$ Equilibrium Conditions:

Monopoly with constant MC II, alternative version

Technology and Preferences	Behavior and Equilibrium
Exogenous func./var./relationships:	The decisions of the agents:
$p(x), C(x) = c \cdot x$	Profitmax: $\max_{x} p(x)x - C(x)$
c	
(implicitly also $x \ge 0$)	
Endogenous variables:	\hookrightarrow Conditional behavior: The monopolist's quantity choice x^*
	Equilibrium Conditions: Equilibrium price follows from the demand curve $p^* = p(x^*)$

The anatomy is not unique

- One can argue that $p^* = p(x^*)$ is the behavior of the monopolist or that it is an equilibrium condition
- This depends on how we interpret the math:
 - The monopolist chooses how much he wants to sell and offers this in the market (e. g. through an auction) and an equilibrium price arises
 - ... or the monopolist chooses how much he wants to sell and also chooses his price
- Point: There is not necessarily just one way of putting the model into the chart

What have we learned?

 An anatomy (a framework) that we can use to categorize and compare our different models

