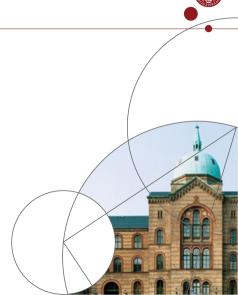


Johannes Wohlfart



Plan for the lecture

- Introduction to monopoly
- 2 The monopolist's profit maximization
- Consequences of monopoly

Monopoly

- We leave the world of the Principal Agent model and its focus on contracts (complicated goods) and look at markets that can be well described just by a price and traded quantity
- The analysis so far has been based on perfect competition or price taking:
 Buyers / sellers take prices as given when making decisions
- Price taking is a reasonable assumption (approximation) if there are many buyers and sellers: My actions are unimportant for the market price if I am a small part of the market
- We will look at a situation that is almost opposite: A single seller in the market, Monopoly (Monos = one, polein = to sell)

Market demand

 As before, the market has an (inverse) demand curve with a negative slope (coming from many consumers' utility maximizations):

$$D(p)$$
 and $p(x) = D^{-1}(x)$

- On the supply side, however, we now have only a single profit maximizing company (monopoly) that has to decide how much it will produce
- Remember from Micro I that we can divide a company's profit maximization problem into two parts:
 - **1** Cost minimization: Given that I want to produce a certain amount of x and my production function is x = F(K, L) how do I do it in the cheapest way
 - ② Given the cost function C(x) as follows from 1), how much do I want to produce (supply)?

Supply side

- Let R(x) be the revenue when selling x units (i.e. just price times quantity)
- Step 2 of the problem becomes:

$$\max_{x} \quad R(x) - C(x)$$

 Assume well behaving functions (R concave, C strictly convex) then an inner solution x* will be determined by the first-order condition:

$$R'(x) = C'(x)$$

• Standard intuition: Marginal revenue from extra sales must equal marginal cost of extra production MR = MC

Perfect competition

 Beforehand, when we have assumed perfect competition and price-taking, the company took the market price p for granted and we have:

$$R(x) = p \cdot x$$
 and $R'(x) = MR(x) = p$

- If we insert into the first-order condition: we get the familiar p = MC
- But note that if our monopoly seller realizes that she is the only seller then she will realize:
 - 1 am the only seller so the x I choose is all that will be traded (the equilibrium amount)
 - 2 I can therefore calculate the (equilibrium) market price that applies in advance by inserting this into the inverse demand function: p(x)
 - **3** So if I change x, I change the market price p(x) (*not* price taking)

Socrative Quiz Question

True or false: If the demand curve is linear, then the marginal revenue curve of the monopolist may or may not be linear.

Monopoly

 If the company does not take the price for granted but uses the insight from the previous slide, we have:

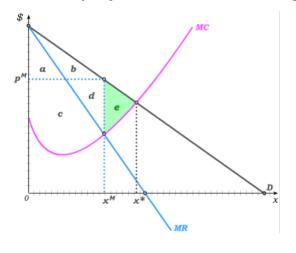
$$R(x) = p(x)x$$
 and $R'(x) = MR(x) = p(x) + p'(x)x$

- Compare with MR under price taking: p'(x) < 0 so the monopolist's MR from producing one more unit of the good is less than the price of the good (what it would be under price-taking).
- When the company is considering producing and supplying a unit more, it thinks: If I supply one unit more ...
 - ... I will receive a payment p for it; both under price-taking and monopoly
 - ... and I will have to lower the market price by p'(x) for all x other units I already supply; new effect, *only* under monopoly

Graphical analysis, monopoly

- We can graphically analyze what happens in equilibrium when we have a monopoly (equilibrium = the monopolist has optimized given p(x))
- We saw that the monopolist's choice should meet $MR(x) = MC(x) \Rightarrow$ equilibrium quantity, x^* is found where MR and MC intersect, equilibrium price is found via the demand curve $p^* = p(x^*)$
- What does the MR curve look like? Remember that the following applies MR(x) = p(x) + p'(x)x and p(x) is the inverse demand
- Hence: At x = 0 the MR curve is equal to the demand curve and at x > 0 the MR curve is below the demand curve

Monopoly results in deadweight loss



- Monopoly means higher price and less quantity than under complete competition: deadweight loss (e)
- A monopolist chooses lower quantity to secure higher price and higher profits
- The monopolist has market power over the price

Pitfalls, reminder

- If the profit function R(x) C(x) is not strictly concave, we can have multiple local maxima or local minima (if R and / or C are "strange")
- In that case, the first-order condition may have several solutions (more than one x where MR(x) = MC(x))
- Checking the second-order condition reveals minima (local maximum if $MR'(x) MC'(x) \le 0$)
- Actual profit comparison reveals which of the local maxima is the global maximum

Corner solutions, reminder

- Optimum can also be a corner solution without production (x = 0) instead of the inner solution x^*
- Divide costs into (recurring) fixed cost and variable costs:
 C(x) = FC + VC(x)
- In the short term (fixed costs can be avoided), zero production is optimal if x* gives negative producer surplus:

$$p(x^*)x^* - VC(x^*) \le 0 \iff p(x^*) < \frac{VC(x^*)}{x} \quad \Big(= AVC(x^*) \Big)$$

In the long run ((recurring) fixed costs are inevitable) closing is optimal if x* yields negative profit:

$$p(x^*)x^* - C(x^*) \le 0 \iff p(x^*) < \frac{C(x^*)}{x} \quad \left(= ATC(x^*) \right)$$

Linear demand I

- Assume linear demand, p(x) = a bx, and constant marginal cost, coming from the linear cost function $C(x) = c \cdot x$ where c < a (otherwise no trades)
- MR for the monopolist: MR(x) = p(x) + p'(x)x = a bx + (-b)x = a 2bx
- Note the useful result: For linear demand, the MR curve is the same as the demand curve only with double slope
- The first-order condition of the monopolist gives traded quantity and price (the profit function is strictly concave and there are no fixed costs):

$$MR(x^*) = c \iff a - 2bx^* = c \iff x^* = \frac{a - c}{2b}$$

$$p^* = p\left(\frac{a - c}{2b}\right) = \frac{a + c}{2}$$

Example, linear demand II

- Compare with perfect competition equilibrium (where constant MC means perfectly elastic supply)
- Under perfect competition the price becomes equal to MC, so the equilibrium quantity (and price) is given by:

$$p(x^c) = c \iff a - bx^c = c \iff x^c = \frac{a - c}{b}$$

 $p^c = c$

 We see that monopoly leads to higher price and lower quantity (and also positive profit; otherwise with constant MC ⇒ zero profits with price-taking)

Solving for price or quantity?

- So far we have assumed that the monopolist maximizes in terms of quantity x, but perhaps it is more intuitive to think about the company as setting a price?
- Maybe, but the demand curve means there is a one-to-one relationship between price and quantity, so here it makes no difference
- This maximization problem (plus the condition $p^* = p(x^*)$) ...

$$\max_{x} \quad p(x)x - C(x)$$

• ... is equivalent to this one (plus the condition $x^* = D(p)$) (check yourself!):

$$\max_{p} \quad pD(p) - C(D(p))$$

Socrative Quiz Question

True or false: If demand becomes more elastic, the monopolist's profits will increase.

What have we learned?

- The marginal revenue for a monopolist is less than for a seller under perfect competition
- Solving the monopolist's problem
- What monopoly means for price, quantity, profit and welfare relative to perfect competition
- The relationship between the demand curve and the marginal revenue curve when demand is linear

