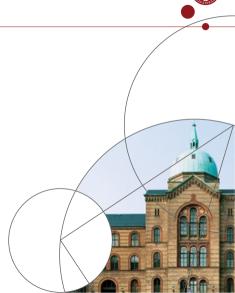


Preference relations and social preferences

Johannes Wohlfart



Plan for the lecture

- Recap on preference relations
- 2 Intro on social preferences and social choice functions
- Social preferences through democracy
- 4 Arrow's impossibility theorem

Agenda

- Our approach so far:
 - Agents that explicitly maximized their utility (preferences) in the model ...
 - 2 ... and an (exogenous) economist (us) / "the public" / society who looked at the model and discussed various policy actions and interventions that could be attractive ...
 - ... where we have primarily assessed attractiveness by efficiency (Pareto Optimality)
- Now we will explore issues 2 and 3 in more detail.

Social Preferences

- We will focus on two issues in particular:
 - Here: In a society where people have different preferences, how do we (or how can we) make social decisions? (descriptive)
 - How does society decide about tax levels, public good provision, environmental regulation, etc.?
 - Simple answer: Democracy! BUT...
 - Here and in the next slideshow: Can we set some criteria for what society should base their decisions on? (more normative)
 - We have implicitly focused on efficiency, but often we have several efficient states, and what about distribution / equality?

Reminder, preference relations

preference relations, definition

Let A be a set of options. A preference relation \gtrsim over A indicates which options are preferred over others.

- If for a couple of options $(x, y) \in A^2$, $x \gtrsim y$ applies, then we say that x is (weakly) preferred to y
- Let \mathcal{P}_A be the sum of all preference relations of A (i.e. $\gtrsim \in \mathcal{P}_A$)
- Only new thing here is (maybe) the amount of \mathcal{P}_A : it just consists of all the preference relations we can imagine

(Remember: besides \gtrsim we can also talk about indifference, \sim , and strictly preferred, >)

Preference relations, a little more formal

Preference relations, definition

Let A be a set of options. A preference relation \geq over A is a quantity of ordered pairs from A, indicating which options are preferred over others (that is. $\geq \subseteq A^2$)

- If for a couple of options $(x, y) \in A^2$ it applies that $(x, y) \in \mathbb{Z}$ we say that x is (weakly) preferred to y and write $x \gtrsim y$
- Let \mathcal{P}_A be the set of all preference relations on A (that is. $\gtrsim \in \mathcal{P}_A$)
- A preference relation can be considered as a long list indicating what is preferred over what

Examples of preference relations

- Let *A* consist of three options $A = \{x, y, z\}$
- We can define an example of a preference relation \geq as:

$$x \gtrsim y$$
$$y \gtrsim z$$

Or written as a quantity (list):

$$\geq = \{(x, y), (y, z)\}$$

Example: Edgeworth-economy I

Technology and Preferences Behavior and Equilibrium

Exogenous func./var./relations:

$$u_{A}(x_{1}^{A}, x_{2}^{A}) = (x_{1}^{A})^{\alpha} (x_{2}^{A})^{1-\alpha}$$

$$u_{B}(x_{1}^{B}, x_{2}^{B}) = (x_{1}^{B})^{\beta} (x_{2}^{B})^{1-\beta}$$

$$\alpha, \beta, e_{1}^{A}, e_{2}^{A}, e_{1}^{B}, e_{2}^{B}$$

The allocation should be possible

Endogenous variables:

$$(x_1^A, x_2^A), (x_1^B, x_2^B)$$

The decisions of the agents:

→ Conditional behavior:

Equilibrium Conditions:

Example: Edgeworth-economy II

• Let *A* be all possible states in the economy, (very) formally:

$$A = \left\{ (x_1^A, x_2^A, x_1^B, x_2^B) \ge 0 \mid e_1^A + e_1^B = x_1^A + x_1^B \text{ and } e_2^A + e_2^B = x_2^A + x_2^B \right\}$$

 Define a preference relation (for A), ≿_A, in which a state is preferred over another state if and only if it provides a (slightly) greater benefit for consumer A:

$$(x_1^A, x_2^A, x_1^B, x_2^B) \gtrsim_A (\bar{x_1^A}, \bar{x_2^A}, \bar{x_1^B}, \bar{x_2^B}) \quad \Longleftrightarrow \quad u_A(x_1^A, x_2^A) \geq u_A(\bar{x_1^A}, \bar{x_2^A})$$

 Utility functions are our standard way of thinking about agent preferences in relation to the possible states

Reminder: Rational preferences

Rational preferences (total pre-order), definition

Let *A* be a set of options and \geq be a preference relation for *A*.

- We say that \geq is *total* if for all $(x,y) \in A^2$ either $x \geq y$ or $y \geq x$ applies
- We say that \succeq is *transitive* if for all $(x,y,z) \in A^3$ where $x \succeq y$ and $y \succeq z$ we have $x \succeq z$
- We say that \gtrsim is *rational* (is a total pre-order) if \gtrsim is total and transitive
- Total: All pairs can be compared; Transitive: If apples are better than pears and pears are better than oranges then apples are better than oranges.

Our first example I

• Our first preference relation example:

$$x \gtrsim y$$
$$y \gtrsim z$$

- This one is not total because we cannot compare x and z nor can we compare any of the options with themselves!
- If we need to change ≥ to make it total we can start by adding:

$$x \gtrsim x$$

$$y \gtrsim y$$

$$z \gtrsim z$$

Our first example II

 Finally, if it is to be made total we must also be able to compare x and z; one option is to add:

$$z \gtrsim x$$

- If we do that, ≥ is total. But in that case it is not transitive because x ≥ y
 and y ≥ z without x ≥ z
- If you add the opposite,

 becomes both total and transitive and therefore rational (check yourself):

$$x \gtrsim z$$

(Overall, we have:
$$\succeq = \{(x,x), (y,y), (z,z), (x,y), (y,z), (x,z)\}$$
)

Preferences via utility functions

- Any preference relation defined via a utility function (such as \gtrsim_A from earlier) is always total and transitive (i.e. rational)
- (One of the reasons economists care about whether preferences are rational is that it is a condition for being able to use utility functions)

Socrative Quiz Question

True or false: Any preference relation that is total and transitive can be described by a utility function.

Aggregation of preferences

- We now want to try to look at a society where agents have different preferences and can make decisions together
- In other words, we would like to aggregate individual preferences to obtain the society preference
- The way we do it is called a social choice function

Social choice functions

Social choice functions

Consider an economy with N agents that we index with i (N is odd). Let A be a number of possible states of the economy:

• Each agent is equipped with a preference relation over A. We denote agent i's preference relation \gtrsim_i and let R denote total preferences in the economy, i.e.

$$R = (\geq_1, \geq_2, ..., \geq_N) \in \mathcal{P}_A$$

• A social choice function $f: \mathcal{P}_A^N \to \mathcal{P}_A$ is a function that aggregates the individual preferences into a single social preference, \gtrsim^* , that is:

$$\geq^* = f(R) = f(\geq_1, \geq_2, ..., \geq_N)$$

Social choice functions, discussion

- The social choice function (SCF) is a rule (or system) that determines how we make decisions (e.g. democracy)
- If we put a collection of preferences (a collection of agents) into the SCF it will tell us what the society will decide jointly
- A little more accurately, the SCF spits out a social preference that tells us how society ranks the various possible states

Example: Dictatorship

- One way to make society's decisions is to make an agent a dictator, e.g. agent 1
- The Dictator SCF can be expressed as:

$$f(\geq_1,\geq_2,...,\geq_N)=\geq_1$$

or equivalently as \gtrsim^* , thus:

$$x \gtrsim^* y \iff x \gtrsim_1 y$$

Example: Democracy

- Another way to make decisions is Democracy
- Society must choose between x (high tax?) and y (low tax?) by simple democracy: Agents just vote between the two options
- Written mathematically, the *Democracy* SCF corresponds to:

$$x \gtrsim^* y$$
 \iff it applies that $x \gtrsim_i y$ for a majority of the agents

Socrative Quiz Question

True or false: If the preferences of all agents in an economy are rational, then so will be the corresponding Democracy SCF.

Analysis of social choice functions

- We will now examine various Social Choice Functions f in practice; How do they work? What characteristics do they have?
- The final social preferences \gtrsim^* depend on which SCF, f, we have chosen and which preferences, R, the agents have
 - We will (basically) allow R to be anything, $R \in \mathcal{P}_A$ and investigate the consequences of different f
 - Intuition: We will investigate whether our way of making society's decisions is "good", regardless of what preferences (what types of people) might end up living in the society
 - (However, we typically assume that agents have rational preferences)

Democracy and decision I

Let's look at the democracy SCF: Society compares opportunities via polls

$$x \gtrsim^* y$$
 \iff it applies that $x \gtrsim_i y$ for a majority of the agents

- Basically, this seems like a really good SCF
- It will be helpful here to think about how the resulting social preference is translated into society choosing an option
- Social utility maximization: society chooses something that is preferred over everything else; mathematically we say that x^* is optimal when:

$$x^* \gtrsim^* y$$
 for all $y \in A$

Democracy and decision II

- One obvious way to find such an optimal decision under democracy is:
 - **1** Choose two options *x* and *y* and hold vote
 - 2 The winner of the voting goes on to a vote against another option z which it has not yet won over
 - Step 2 is repeated until there is an option that has won over all the other options
- This decision-making process is natural:
 - Just corresponds to sequentially comparing two options as prescribed under the SCF
 - Easy to show mathematically that the process will end up choosing an optimal option x* (if such an option exists)

Democracy, example 1

• Let $A = \{x, y, z\}$ and N = 3 and let (mathematically imprecise) the three agents have rational preferences described as follows:

Agent 1:
$$x \gtrsim_1 z \gtrsim_1 y$$

Agent 2: $y \gtrsim_2 z \gtrsim_2 x$
Agent 3: $z \gtrsim_3 x \gtrsim_3 y$

- Now we hold polls starting with x against y:
 - 1 x vs y; voting: $x, y, x \Rightarrow x$ wins
 - 2 x vs z; voting: $x, z, z \Rightarrow z \text{ wins}$
 - 3 z vs y; voting: $z, y, z \Rightarrow z$ wins
 - $\mathbf{4}$ z has beaten all other options, so z wins

Democracy, example 2

Now look at these (rational) preferences instead:

Agent 1:
$$x \gtrsim_1 y \gtrsim_1 z$$

Agent 2: $y \gtrsim_2 z \gtrsim_2 x$
Agent 3: $z \gtrsim_3 x \gtrsim_3 y$

- Now we hold polls starting with x against y:
 - 1 x vs y; voting: $x, y, x \Rightarrow x$ wins
 - 2 x vs z; voting: $x, z, z \Rightarrow z \text{ wins}$
 - 3 z vs y; voting: $y, y, z \Rightarrow y$ wins
 - $\mathbf{4}$ y vs x; voting: $x, y, x \dots$
 - 6 LOOP!

Condorcet cycles

- The example shows that under democracy situations can occur where one can keep voting without finding a winner, so-called Condorcet cycles
- Mathematically, the problem is that the social preference ends up not being transitive, for example we have:

$$x \gtrsim^* y$$
 and $y \gtrsim^* z$

but it does not hold that:

$$x \gtrsim^* z$$

 Because social preferences are not transitive, there is no longer an optimal option x* that beats all the others (a Condorcet winner)

Democracy is problematic

- Note that the problem of intransitive social preferences arose even though all agents' preferences are transitive
- The democracy SCF thus has the unfortunate characteristic that it can result in intransitive social preferences (and Condorcet cycles)
- Can we come up with a way to fix the democratic process?
 - One option: Put (other) restrictions on how to vote?
 - Simple (realistic) bid: Do not allow voting again for an option that has already lost

This change removes the cycles ...

Democracy, example:

Agent 1:
$$x \gtrsim_1 y \gtrsim_1 z$$

Agent 2: $y \gtrsim_2 z \gtrsim_2 x$
Agent 3: $z \gtrsim_3 x \gtrsim_3 y$

- Now we are holding polls starting with x against y:
 - 1 x vs y; voting: $x, y, x \Rightarrow x$ wins
 - 2 x vs z; voting: $x, z, z \Rightarrow z \text{ wins}$
 - 3 Both x and y have lost a vote, so z wins

... but now the order of voting means a lot

Democracy, example 2:

Agent 1:
$$x \gtrsim_1 y \gtrsim_1 z$$

Agent 2: $y \gtrsim_2 z \gtrsim_2 x$
Agent 3: $z \gtrsim_3 x \gtrsim_3 y$

- Now we are holding polls starting with x against z:
 - 1 x vs z; voting: $x, z, z \Rightarrow z$ wins
 - 2 z vs y; voting: $y, y, z \Rightarrow y$ wins
 - 3 Both x and z have lost a vote, hence y wins

Agenda setting

- If we impose restrictions on the voting process, the order determines the overall winner
- Voting results can thus be manipulated by changing the voting agenda.
- Known as Agenda setting power.
- Similar phenomena apply to other changes to the voting rules.
- Example: Vote for more options than two? Now the outcome is influenced by what other options are included in the vote.

Another "solution"

 Another (important) way to get rid of our anti-democratic conclusions is to impose multiple assumptions on preferences

Single-peaked Preferences, definition

Let $A \subseteq \mathcal{R}$. We say that agents have *single-peaked* preferences if for each agent i there exists an *ideal point* $x_i \in A$ such that for all $(y, z) \in A^2$ we have

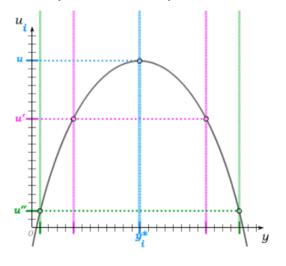
$$x_i \ge y \ge z \Longrightarrow y \gtrsim_i z$$

and

$$x_i \le y \le z \Longrightarrow y \gtrsim_i z$$

• Intuition: Every agent has a favorite option x_i and just wants to get as close to this point as possible

Graphical example



 Let agent i have preferences described by the utility function:

$$u_i(x) = -(x_i - x)^2$$

- Utility is highest when $x = x_i$
- Otherwise, it's just about being as close as possible

Socrative Quiz question

True or false: Preferences described by the below utility function are not single-peaked.

$$u_i(x) = -(x_i - x)^2 - (x_i - x)^4$$

Median Voter Theorem

• If the preferences are single-peaked, the median voter theorem tells us that we are getting rid of the unfortunate previous conclusions:

Median Voter Theorem

Assume that agents have single-peaked preferences and let x_i indicate the ideal point of agent i. We say that agent i is a median voter if his ideal point is equal to the median of all the ideal points:

$$x_i = med x_j$$

It is now true that the ideal point of the median voter is socially optimal (is a Condorcet winner) under the Democracy SCF:

$$med x_j \gtrsim^* y$$
 for all $y \in A$

Median Voter Theorem, proof (sketch)

- Let y be any option in A, it applies that:
 - If $y \le med x_j$, then $med x_j$ is preferred by the median voter and anyone with ideal point above the median \Rightarrow majority
 - If $y \ge med x_j$ is $med x_j$ preferred by the median voter and anyone with ideal point below the median \Rightarrow majority
- The median voter's ideal point wins every pair vote and is socially optimal (is a Condorcet winner)

Median Voter Theorem, discussion

- The median voter theorem provides some conditions on the preferences that remove the problem of Condorcet cycles
- The median voter theorem also provides a descriptive prediction:
 - Under democracy we always end up choosing what the median voter wants
 - Formalizes the intuitive idea that politics always ends up doing something "in the middle" of people's preferences

Median voter theorem, disadvantages

- The result requires a one-dimensional policy with a clear ranking $(A \subseteq \mathcal{R})$:
 - Does not work with options without a ranking:
 - $A = \{ \text{paint red, paint white, paint grey} \}$
 - Does not work with two-dimensional policies:
 - $A = \{ \text{high immigration and high taxes, } \}$

high immigration and low taxes, low immigration and high taxes,

low immigration and low taxes }

- Single-peaked may not hold even for one-dimensional policies with a clear ranking:
 - Eg. how much money are we going to spend on primary school:
 A = {a lot, a little, none}
 - If a poor public school gets someone to use private school we can get a lot ≥ none ≥ a little

Socrative Quiz question

True or false: A democracy with a set of voters with rational and single-peaked preferences is equivalent to a dictatorship where the median voter is the dictator.

Arrow's impossibility theorem

- · We will end by looking at the famous Arrow's impossibility theorem
- A great economist: Kenneth Arrow, Nobel Prize 1972 (youngest until 2019)
- Arrow's famous analysis is based on:
 - 1 List of five conditions that a "good" SCF should fulfill
 - Mathematically investigate which SCFs meet these conditions

I: Universal domain (UD)

Universal domain (UD)

The social choice function f must be defined for all rational preferences over A. That is:

$$f: Q_A^N \to \mathcal{P}_A$$

where $Q_A \subseteq \mathcal{P}_A$ is defined as the amount of rational preferences over A

 Intuition: Arrow wants his SCF to work no matter how the preferences look, as long as they are rational (total and transitive)

(We have implicitly assumed this already)

II: The Pareto criterion (PU)

The Pareto criterion (PU)

For any pair of options $(x, y) \in A^2$ it should apply that if all agents prefer x over y then the social preferences should do so too:

$$x \gtrsim_i y$$
 for all $i \implies x \gtrsim^* y$

for
$$\gtrsim^* = f(\gtrsim_1, \gtrsim_2, ..., \gtrsim_N) = f(R)$$

 Intuition: Arrow wants that if all individuals like apples better than pears then society should also like apples better than pears

III: Rationality criterion (R)

Rationality criterion (R)

The social preferences that come out of the social choice function, $\gtrsim^* = f(R)$ must be rational, i.e. total and transitive

- Intuition part 1: Arrow wants society to be able to compare all possibilities (total)
- Intuition part 2: If society prefers apples over pears and pears over oranges, it should also prefer apples over oranges

IV: Independence of irrelevant alternatives (IIA)

Independence of irrelevant alternatives (IIA)

Let $R=(\succsim_1,\succsim_2,\ldots\succsim_N)\in Q_A^N$ and $R'=(\succsim_1',\succsim_2',\ldots\succsim_N')\in Q_A^N$ be two possible sets of preferences for the agents and let $\succsim^*=f(R)$ and $\succsim^*{}'=f(R')$ be the associated social preferences. For any pair of options $(x,y)\in A^2$, it should apply that if all agents rate x and y equally under R and R', then the social preferences must rank this way as well, i.e. if

$$x \gtrsim_i y \iff x \gtrsim_i' y$$

it should apply that

$$x \gtrsim^* y \iff x \gtrsim^* ' y$$

IIA, intuition

- Consider a set of preferences for the agents $R = (\geq_1, \geq_2, ... \geq_N)$ and look at two options x and y
- We now imagine that we change the preferences of one or more agents, but without changing their relative valuation of x and y, ie. we only change preferences regarding one (or more) irrelevant options z
 The IIA condition now states that this should not affect whether society prefers x to y

"Agents' preferences for liquor should not affect whether the society prefers caramel to chocolate"

V: The non-dictatorship criterion (ND)

The non-dictatorship criterion (ND)

For all agents i, there must be at least one $R = (\geq_1, \geq_2, ..., \geq_N) \in Q_A^N$ where i does not dictate social preferences, i.e. where:

$$f(R) \neq \gtrsim_i$$

- Intuition: Arrow doesn't want the SCF to just mean that one particular agent always determines the results
- Note: Nechyba uses a different (weaker) definition of dictatorship

Arrow's Impossibility theorem

- Now we have reviewed the five (reasonable?) conditions that Arrow sets for a good SCF
- We will not spend time reviewing Arrow's analysis (evidence), but just look at his (remarkable) conclusion:

Arrow's Impossibility theorem

- Now we have reviewed the five (reasonable?) conditions that Arrow sets for a good SCF
- We will not spend time reviewing Arrow's analysis (evidence), but just look at his (remarkable) conclusion:

Arrow's Impossibility Theorem

If $N \ge 2$ and A contains at least 3 different options then there is *no* social choice function that satisfies the conditions (UD), (PU), (R), (IIA) and (ND).

 Wild result! There is no systematic way of aggregating preferences that meets Arrow's desired conditions

Dictatorship is "possible"

• In a way, it gets even worse (if you are pro democracy):

The dictator function complies with the conditions

A social choice function that makes one of the agents a dictator meets the conditions (UD), (PU), (R) and (IIA)

If we drop our dictator condition, dictatorship is a usable SCF

Arrow's Impossibility theorem, discussion

- The Impossibility Theorem emphasizes how difficult it is to aggregate preferences of (potentially) disagreeing agents
- The result can be seen as a severe blow to the idea that it is possible to arrive at a good / fair arrangement for society's preferences
- Arrow is quoted for:

"I'm not saying that all decision-making systems are always bad, just that every decision-making system will sometimes work less well."

What now?

- If you want to go ahead with a project to find a good SCF for the society, then you have to relax one of Arrow's requirements
- There is a great deal of literature examining what happens if one or more of Arrow's criteria are compromised (see especially Amartya Sen's work)
- You can see our next topic as an example of this

What have we learned?

- What is a social choice function
- Democracy can provide intransitivity and Condorcet cycles
- What are single-peaked preferences and what do they mean
- What does Arrow's impossibility theorem say?

