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ABSTRACT

This thesis investigates the predictive capability of five Long Short-Term Memory (LSTM) models, varying
from one to five LSTM layers, in forecasting monthly US excess stock returns. The optimal network identified
from this comparison utilises the 20 most important features for out-of-sample predictions. These features
are selected from 94 stock characteristics and 13 macroeconomic predictors using the permutation feature
importance (PFI) technique. The predicted excess returns are employed to construct a 10-1 hedge portfolio
to assess economic gains. The multivariate LSTM model is compared against a traditional feed-forward
neural network (FNN), a buy-and-hold strategy, and a univariate LSTM model. The results reveal that
the optimal LSTM network comprises two LSTM layers. Yet, its R? of —3.547 indicates poor predictive
accuracy relative to the FNN. Additionally, the 10-1 hedge portfolio strategy does not outperform a buy-
and-hold strategy of the S&P 500 index. However, the multivariate LSTM model achieves a higher Sharpe
ratio and generates statistically significant positive excess returns compared to the univariate LSTM model,
suggesting that incorporating additional features enhances performance. Among the most crucial features,
two pertain to risk measures, three to liquidity, and ten to valuation ratios and fundamental indicators, with
no momentum-related features deemed important. Finally, the five most critical macroeconomic predictors

are inflation, 3-Month Treasury Bill, long-term yield, term spread, and long-term rate of returns.
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1 INTRODUCTION

This thesis conducts a comprehensive examination of Long Short-Term Memory (LSTM)
models’ ability to predict monthly US excess stock returns. The field of empirical asset pric-
ing has traditionally relied on foundational models such as the Capital Asset Pricing Model
(CAPM), introduced by Sharpe (1964), and further expanded upon by the Fama-French
Three-Factor model (FF3) as detailed in Fama and French (1993). These models utilise
fundamental characteristics to predict future excess stock returns. While fundamental, these
conventional methodologies have come under increasing scrutiny. Critics argue that their
linear and relatively simplistic assumptions fail to adequately capture financial markets’ dy-

namic and intricate behaviour, thereby leading to poor excess stock return predictions.

The advent of machine learning (ML) techniques, as seen in Gu et al. (2020), promises a
paradigm shift in this respect, offering sophisticated tools to dissect and predict equity risk
premiums with greater precision. LSTM models especially emerge as promising methods
among these ML techniques. As illustrated in the studies by Moghar and Hamiche (2020),
Ghosh et al. (2022), and Gaur (2023), LSTMs demonstrate an advantageous ability to cap-

ture temporal dependencies and predict future excess stock returns.

Building upon the framework established by Gu et al. (2020), this thesis investigates whether
LSTM models can effectively predict monthly US excess stock returns and achieve economic
gains. Furthermore, it explores whether LSTM models can outperform the traditional feed-
forward neural network (FNN) employed by Gu et al. (2020). Unlike FNNs; LSTM networks
incorporate a form of memory, allowing them to excel in detecting long-term relationships
in time series data, which are pivotal for understanding market dynamics. For a thorough

exploration of this topic, the analysis is segmented into the following three hypotheses:

H1 Employing permutation feature importance in conjunction with an LSTM model uncovers

the most critical features for predicting excess stock returns.

H2 LSTM models exhibit superior accuracy in predicting excess stock returns compared to

traditional feed-forward neural networks.

H3 A 10-1 hedge portfolio constructed using LSTM predictions generates significant economic

gains, net of transaction costs.
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To test these hypotheses, this thesis examines 94 stock characteristics and 13 macroeconomic
predictors, outlined by Green et al. (2017) and Welch and Goyal (2008), respectively. These
features are obtained from The Center for Research in Security Prices (CRSP) and Compus-
tat. Previously analysed by Gu et al. (2020), these features are now reevaluated in this thesis
to determine their effectiveness in predicting monthly excess stock returns using an LSTM

model.

In addition, five LSTM architectures are explored, ranging from a single LSTM layer to a
five-layer structure. These models were trained and optimised using K-fold cross-validation
on data from 1960 to 2008. The optimal network structure is then employed for variable
selection, utilising permutation feature importance (PFI) to identify the most important

predictors for forecasting monthly excess stock returns.

The analysis identifies the optimal LSTM model to contain two LSTM layers, denoted as
LSTM2. This model selects the 15 most important stock characteristics and five key macroe-
conomic predictors, along with past monthly excess stock returns, to generate forecasts for
the out-of-sample period from 2009 to 2020. These predictions are used to sort stocks into
deciles, representing portfolios. The highest decile (tenth) contains stocks with the highest
predicted excess returns, while the lowest decile (first) contains stocks with the lowest pre-

dicted excess returns.

Finally, a long-short investment strategy, also referred to as the 10-1 hedge portfolio strategy,
is implemented by going long on stocks in the highest decile and shorting stocks in the lowest
decile. The effectiveness of the portfolios is evaluated using the Sharpe ratio and the FF3.
The analysis closes with an examination of the constructed portfolios to identify the patterns
and industries that characterise the stocks selected by the LSTM model.

My contributions to the field of empirical asset pricing are threefold: (i) Building upon the
foundational research of Gu et al. (2020), I enhance the analysis by incorporating five new
macroeconomic predictors. (ii) I expand the temporal scope of the dataset beyond the period
examined by Gu et al. (2020), extending the analysis to include data from 2017 to 2020. (iii)
I introduce another model, specifically the LSTM model, into the framework established by
Gu et al. (2020).
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Accurate forecasts of excess stock returns are crucial for investors and financial institutions,
enabling informed decision-making, risk management, and strategic asset allocation. How-
ever, it is inherently challenging due to the returns’ unpredictable nature, influenced by

factors such as unemployment rates, retail sales, investor psychology, and global events.

Empirical asset pricing seeks to address these complexities by analysing historical data to
identify patterns and test theories for predicting excess stock returns. Traditional methods,
such as conditional portfolio sorting and linear regression models, have played an important

role in identifying predictors and understanding asset pricing dynamics.

However, ML offers significant advancements over traditional methods by handling a broader
set of predictors and analysing complex, nonlinear relationships between variables. This
expands the modelling scope for asset prices and enhances the precision of risk premium
measurements. The integration of ML allows researchers to uncover intriguing patterns and
insights in financial data, often overlooked by traditional approaches. Furthermore, the ML
approach allows for estimating excess stock returns without the constraints of fixed functional
form assumptions, eliminating the reliance on preconceived notions about the data’s distri-
bution characteristics. This shift offers a more nuanced perspective on the factors driving

asset prices, enriching our understanding of financial markets.

The methodology employed in this thesis offers a promising path for institutional investors
to overcome some of the traditional challenges associated with excess stock return prediction.
The focus on institutional investors, such as banks and large funds, arises from the substan-
tial computational resources and extensive data LSTM models require for peak performance.
Despite their high cost, adopting an LSTM method can be particularly beneficial for entities
with the requisite computational capacity and data access, offering a potential edge in the

market.

This thesis reveals that among the most crucial features for predicting excess stock returns,
two pertain to risk measures, three to liquidity, and ten to valuation ratios and fundamen-
tal indicators. Additionally, it identifies the five most critical macroeconomic predictors to
be inflation (infl), 3-Month Treasury Bill (tbl), long-term yield (lty), term spread (tms),
and long-term rate of returns (ltr). However, the LSTM model did not outperform the tra-
ditional FNN employed in the study by Gu et al. (2020). Nevertheless, the implemented
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long-short investment strategy based on the multivariate LSTM2 did generate small yet
statistically significant positive excess returns. Thus, the multivariate LSTM2 model out-
performed the univariate LSTM model, suggesting that incorporating a broader range of
features can enhance performance. However, the LSTM2 failed to outperform a passive buy-
and-hold strategy based on the market index. Specifically, the multivariate LSTM2 model

achieved an annual Sharpe ratio of 0.447, compared to the market index’s Sharpe ratio of 0.96.

The remainder of this paper is structured as follows: Section 2 reviews past literature on
asset pricing from 1964 to the present, providing a historical and contemporary context for
this thesis. Section 3 delves into the theories presented in the literature. Section 4 outlines
the methodology employed in this thesis. Section 5 illustrates the empirical results of this
thesis, focusing on the analysis of US stocks. Section 6 discusses and critically assesses the
methodology and results of this thesis. Additionally, it outlines directions for future research
and considerations for real-world application. Finally, Section 7 summarises the main findings

and their implications.

2 LITERATURE

This section first explores the fundamental factor models in empirical asset pricing and high-
lights notable advancements that have influenced the field. It then addresses the limitations
inherent in these models and explains how Machine Learning (ML) techniques are employed
to mitigate these challenges. The literature extends beyond traditional ML methodologies,
such as feed-forward neural networks (FNN), and explores the field of Long Short-Term
Memory (LSTM) networks. It clarifies the advantages of LSTM networks, outlines my con-

tributions, and presents the main hypotheses.

Introduced by Sharpe (1964), the Capital Asset Pricing Model (CAPM) posits that an asset’s
expected excess returns are fully explained by its beta, which measures its correlation with
the market portfolio. However, Ross (1976) introduces the Arbitrage Pricing Theory (APT)
through a linear factor model, challenging the assumptions of the CAPM. The APT suggests
the presence of critical factors not accounted for in the CAPM. Specifically, the APT posits
that excess stock returns are influenced not only by their riskiness relative to the market but

also by macroeconomic factors, such as inflation or GNP.

Building on the foundational principles established by the CAPM and APT, Banz (1981) in-
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troduces the concept of the size premium, followed by Rosenberg et al. (1985) proposing the
value premium. These factors aim to account for a more significant fraction of the fluctua-
tion in excess returns beyond what market risk explains, thereby challenging the foundational
assertions of the CAPM. As a result, by incorporating these two additional factors, Fama
and French (1993) introduced the Fama-French Three-Factor model (FF3), offering a more

nuanced understanding of excess stock returns.

The study by Lewellen (2014) utilises the Fama-MacBeth regression technique, introduced
by Fama and MacBeth (1973), which is a two-step regression method to assess expected re-
turns. First, betas for each asset are estimated. Then, these betas are used in a second set of
cross-sectional regressions over various dates to examine the relationship between betas and
stock returns. Lewellen (2014) simultaneously analyse the predictive capacity of various firm
characteristics. The study focuses on 15 firm-specific features characterised by low-frequency
data and reports a monthly predicted return of 0.74. This demonstrates that a select number

of characteristics significantly impact expected stock returns.

Addressing ongoing critiques and identifying new determinants influencing excess stock re-
turns, Fama and French (2015) introduced the Fama-French Five-Factor model (FF5). This
expanded model includes two new factors, profitability and investment, in the foundational
framework, aiming for a more comprehensive explanation of excess stock returns. Despite
the improvements introduced by the FF5 model, it has limitations in comprehensively under-
standing the variations of excess stock returns across portfolios. Notably, they acknowledge
that the FF5 model does not fully account for the lower average returns of smaller stocks.
This is attributed to these smaller stocks exhibiting patterns similar to heavily invested firms

despite their lower profitability.

Building upon these findings, Green et al. (2017) expand the scope of the investigation to 94
characteristics, applying the Fama-MacBeth regression method with corrections for biases,
including data-snooping and the disproportionate influence of microcap stocks. Their study
from 1980 to 2014 reveals that merely 12 characteristics serve as reliable stock return pre-
dictors. This confirms the findings of Lewellen (2014), who demonstrated that only a small

fraction of investigated features have significant predictive power.

Despite the valuable insights derived from using the Fama-MacBeth regression, this method-
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ology has shortcomings. One significant limitation is the method’s capacity to analyse only
a finite number of characteristics effectively. Moreover, the approach is predicated on the as-
sumption that the relationship between predictors and stock returns is linear. This reliance
on linearity is primarily motivated by ease of interpretation and computational efficiency
rather than concrete empirical evidence supporting linear relationships in financial markets.
Such a simplification overlooks the complex and potentially nonlinear interactions between
various firm attributes and their impact on expected stock returns. Consequently, studies

started to explore new nonlinear methodologies within empirical asset pricing.

Gu et al. (2020) advocate for the use of various ML methods to measure asset risk premiums.
Contrary to the traditional factor models, ML can efficiently process a broad set of predic-
tors and manage complex functional forms. However, the definition of ML remains fluid and
tends to be context-dependent. This thesis adopts elements of Gu et al. (2020)’s definition
of ML to describe: (i) A narrow spectrum of LSTM models aimed at statistical prediction.
(ii) Techniques known as 'regularisation’ for selecting models and reducing overfitting. (iii)
Advanced algorithms that facilitate the exploration of numerous potential model configura-

tions efficiently.

According to Gu et al. (2020), the growing interest in ML within empirical asset pricing
stems from several factors: First, empirical asset pricing primarily focuses on understanding
the varying expected returns across different assets and the market’s equity risk premium.
Determining an asset’s risk premium involves predicting its future excess returns. Machine

learning excels in predictive analytics, so it is exceptionally well-matched for this task.

Second, the landscape of empirical asset pricing is dotted with numerous stock characteristics
and macroeconomic indicators that have been put forth as potential predictors. However, if
many of these predictors are highly correlated, traditional prediction techniques face a chal-
lenge. This is where ML comes in, simplifying the analysis by focusing on variable selection

and reducing data complexity.

Lastly, a significant challenge is the uncertainty about how predictors should influence risk
premiums. Questions about modelling these relationships, incorporating nonlinear dynamics,
and considering predictor interactions complicate the model-building process. With its range

of techniques, from simple linear models to complex structures such as regression trees and
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neural networks, ML is well-equipped to navigate these complexities and uncover intricate

nonlinear patterns.

Gu et al. (2020) investigates nearly 30,000 individual stocks from 1957 to 2016. Their pre-
dictor set includes 94 stock characteristics, interactions of each characteristic with eight
macroeconomic variables, and 74 industry sector dummy variables totalling more than 900
baseline signals. The study highlights the superior performance of traditional FNN models
compared to linear regressions and tree-based models, particularly in achieving the highest
Sharpe ratio. This thesis adopts parts of their framework, specifically using the same eight
macroeconomic predictors, 94 stock characteristics, and companies listed on the same US
stock exchanges. Moreover, this thesis incorporates aspects of their neural network approach
and applies elements of their hyperparameter tuning method. Lastly, this thesis applies the

same metrics and tests for economic contribution, such as constructing 10-1 hedge portfolios.

Gu et al. (2020) provide a foundational framework for calculating expected excess returns,

establishing a general equation to guide such predictions:

Tite1 = Ey(i0401) + €041, (1)

where
Ei(rigs1) = 9(2iz)- (2)
In this equation, g(-) represents a nonlinear function, with stocks indexed as i = 1,..., Ny,
months by ¢ =1,...,T, and the predictors noted as the P-dimensional vector z;;. A notable

limitation of this approach emerges during out-of-sample forecasting, where g(-) depends
neither on ¢ nor ¢. In addition, ¢(-) depends on z only through z;;, which implies that the
predictions do not leverage information from the history before ¢ or from individual stocks
other than the ith.

Given the limitations of FNNs, research by Naik and Mohan (2019) highlight the superior
performance of LSTM models in forecasting excess stock returns. This advantage is at-
tributed to the model’s unique ability to incorporate an intermediate storage, known as the
memory cell, during out-of-sample prediction. Hence, the LSTM model depends on both ¢
and ¢, implying that its predictions leverage information from the individual stock and its

history prior to t.
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This is further reinforced by Gaur (2023), who emphasises the significance of historical data
in predictive analysis. The LSTM models’ ability to retain and utilise extensive sequences
of past data allows for a more detailed understanding of individual stock’s return dynam-
ics. This feature is particularly valuable in stock market forecasting, where understanding

historical trends and patterns can significantly improve the prediction of future excess returns.

However, upon closer examination of the application of LSTM models for excess stock return
prediction, a notable disparity in the number of predictive features used becomes evident,
especially when compared to Gu et al. (2020). For instance, K. Chen et al. (2015) employ ten
features, Hansson (2017) focuses solely on historical returns, Moghar and Hamiche (2020) use
only the opening price, Adila et al. (2022) concentrate on the closing price, Mi et al. (2023)
incorporates seven features, and Gaur (2023) utilises a mere four features, encompassing
opening, closing, highest, and lowest prices. This disparity underscores the significant gap in
the complexity and depth of predictive features across different studies, suggesting potential
areas for further exploration and refinement in using LSTM models for predicting excess

stock returns.

Drawing from the literature and the results presented above, my contribution to the field is
threefold: (i) I build on the work of Gu et al. (2020) by integrating five additional macroe-
conomic predictors. (ii) I extend the dataset period beyond that used by Gu et al. (2020) to
include the years 2017 to 2020. (iii) I introduce another model, specifically the LSTM model,
into the framework established by Gu et al. (2020). As a result, this approach integrates a
total of 107 features, surpassing the number of features used in previous studies that also
employ an LSTM model. This expansion not only enriches the model’s predictive capacity

but also sets a new benchmark in terms of feature complexity.

Based on my contributions, informed by the literature and the findings presented herein, the
primary objective of this thesis is to assess the ability of LSTM models to forecast excess
stock returns and achieve significant economic gains. Additionally, it aims to demonstrate the
superior performance of LSTM models over traditional methods and to determine whether
the LSTM outperforms the traditional FNN employed by Gu et al. (2020). To systematically

address this question, the analysis is structured around three main hypotheses:

Hypothesis 1 (H1): Employing permutation feature importance in conjunction with an

LSTM model uncovers the most critical features for predicting excess stock returns.
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Hypothesis 2 (H2): LSTM models exhibit superior accuracy in predicting excess stock re-
turns compared to traditional feed-forward neural networks.
Hypothesis 3 (H3): A 10-1 hedge portfolio constructed using LSTM predictions generates

significant economic gains, net of transaction costs.

3 THEORY

Section 3.1 establishes a baseline understanding of asset pricing models, such as the CAPM
and APT. This provides the theoretical foundation for deriving an FF3 regression model to
evaluate the long-short strategy. Subsequently, Section 3.2 explores the differences between
FNNs and recurrent neural networks (RNNs), underscoring the enhanced ability of LSTM
to manage the complex, nonlinear relationships present in financial datasets. Additionally,

Section 3.3 addresses the role of permutation feature importance in identifying key predictors

within LSTM models.

3.1 TRADITIONAL ASSET PRICING MODELS

The CAPM is an equilibrium model that assumes investors make asset allocation decisions
based on a trade-off between expected returns and portfolio variance. This implies that each
investor holds a mean-variance efficient portfolio, which optimises expected returns for a
given level of risk. Furthermore, the CAPM asserts that the market portfolio, representing
the aggregate of all individual portfolios, is also mean-variance efficient, assuming that all
investors share identical expectations about the returns and (co)variances of individual assets
and that there are no transaction costs, taxes, or trading restrictions (Verbeek, 2017). As
a result, a linear relationship can be established between the expected excess returns of
individual assets and the expected excess return of the market portfolio. Thus, the following

equation holds that:

B[Ry — Ryy] = Bi - (B[R] — Ryy), (3)

where E[R; ;] signifies the expected return for asset i at time ¢, Ry, is a risk-free asset, and

E[R..+] — Ry, represents the premium for market risk. The coefficient §; is defined as

_ Covariance(R;, Ry )

B =

, (4)

Variance(Ry,,.)

in which R;; is the return on an individual stock, and R,,; is the market’s overall return. f;

quantifies the extent to which changes in asset i's returns are correlated with overall market
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movements. It is a measurement of systematic risk or market risk. Investors are compensated
for bearing this type of risk through a risk premium E|[R,,]— R, > 0 since it is impossible to
eliminate systematic risk through portfolio diversification without reducing expected return

(Verbeek, 2017).

Assuming rational expectations only for this derivation, which posits that the expectations
of economic agents coincide with mathematical expectations, it is possible to derive a linear

regression model from equation (3).

Initially, define the unexpected return of asset i as
Ui = Ri,t - E{Ri,t}~
Next, specify the unexpected returns of the market portfolio as
Umt = Rt — E{Rpm}
Equation (3) is now reformulated as
Riy — Ryy = Bi( Ry — Ryt) + €y, (5)

where

€t = Ujt — 5ium,t-

Equation (5) is a regression model without an intercept. The error term ¢;, is a function of
unexpected return, and it can be illustrated that it satisfies some minimal requirements for a
regression error term. According to Verbeek (2017), following the definitions of u;; and s, ,

which is they both have a mean zero, i.e.,

E{ei+} = E{uit} — BiE{um} = 0. (6)

In addition, it is uncorrelated with the regressor R,,; — Rs;. This can be inferred from the

definition of f3;, which may also be written as

& . E{Uz‘,tum,t}

-~ Variance{u,,}’

and the outcome of

Page 10 of 74



UCPH, Economics Christian Birk Gustafson: 1dg790

E{Gi,t(Rm,t - Rf,t)} = E{(uzt - B@umt)umt} = E{ui,tum,t} - B@E{u?nt} =0, (7)

where Ry, is not stochastic. This implies that any component of the asset’s excess return

that is correlated with the excess market return is captured by the term ; - (Rt — Ryt)-

Based on the above results, the OLS estimator provides a consistent estimator for ;. This
consistency arises because the error term has a zero mean and is uncorrelated with the re-
gressor R,,; — Rs;. These conditions ensure no systematic bias in the estimates, implying
that, on average, the estimates are accurate. Furthermore, assuming that ¢;; does not ex-
hibit autocorrelation or heteroskedasticity, the OLS estimates, standard errors, and tests are
considered valid. This validity is attributed to the asymptotic result and the approximate
distributional result provided by Verbeek (2017).

According to the APT, a stock’s expected return, 7 ,, can be written as a linear combination

of underlying factors, fi:

K
Ttn = Oy + Z 6n,k’ft,k’ + €t,n, (8>

k=1
where «,, is the constant to stock n, the error term related to the stock is €, at time ¢, and

the sensitivity of stock n to factor &k is shown by 3, .

The main difference between CAPM and APT is the introduction of multiple factors in the

APT model that could influence an asset’s returns beyond the market risk factor accounted
for in the CAPM.

Expanding upon the CAPM’s foundational principles and incorporating insights from the
APT, the FF3 model offers a more nuanced approach to assessing excess asset returns. This
model evolves from the singular focus on market risk in the CAPM to include two additional
risk factors: size and value. The FF3 model posits that firms’ size and book-to-market ratios
significantly influence an asset’s expected excess returns, thus challenging CAPM’s assump-

tion that market beta is the sole determinant of those excess returns.

The derivation of the CAPM regression, as shown in equation (5), can be extended to the

FF3 model by incorporating the two extra risk factors. Adopting the notation from Verbeek
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(2017), the FF3 model is expressed as follows:
Ri7t — Rﬁt = q; + 5i(Rm,t - Rﬁt) + bs . SMBt + b'u . HMLt + €it- (9)

Equation (9) is a regression model and is extended to include an intercept term, denoted
as ;. The market risk premium, R,,; — Ry,, is also referred to as MKT. The difference
between small and big market capitalisation is denoted by SMB, and the difference between
high and low book-to-market ratios is represented by HML. Moreover, by and b, denote the
sensitivity of the asset’s excess return to the SMB and HML factors, respectively. A posi-
tive by suggests that the asset is weighted towards small-cap stocks, whereas a negative b,
indicates it is weighted towards large-cap stocks. Similarly, a positive b, indicates that the
asset is weighted towards value stocks, whereas a negative b, suggests it is weighted towards

growth stocks.

The intercept term, «;, captures the portion of the asset’s excess return not explained by its
exposure to the three risk factors. The FF3 model is utilised in Section 5.4.3 to evaluate the
long-short portfolio. If the portfolio generates excess returns above those predicted by the
FF3 model, the long-short strategy has generated a positive ;. Conversely, a negative «;

suggests that the long-short strategy has underperformed relative to the FF3 model.

3.2 FroM FNN 17O RNN: THEORETICAL JUSTIFICATION FOR USING
LSTM

A traditional FNN is an artificial neural network in which connections between the nodes
do not form a cycle. This is in contrast to an RNN, which enables information to circulate
within the network. The FNN only moves in one direction: from the input layer, through
any hidden layers, to the output layer. There are no backward connections from a node to
any preceding nodes, preventing the formation of cycles. The output layer typically consists
of one neuron for regression or several neurons for classification, while the number of units
in the input layer equals the dimension of the predictors. As the fitted value in a regression
analysis, the output layer is intended to forecast future values. However, due to their com-
plexity, neural networks are among the most highly parameterised, least transparent, and

challenging to interpret machine learning techniques (Scheuch et al., 2023).

Within FNNs; each neuron transmits its output to the subsequent layer following the appli-

cation of a nonlinear activation function, denoted as f to the aggregated signal:
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Nl
1 _ k k
v, =f |6+ E Zjel,j
=1

Within this equation, z; represents the input variables, which can either be the raw data
or, in the case of several chained layers, the result from a previous layer z; = zy — 1. N
denotes the number of units (a hyperparameter to tune). The parameters to fit are denoted
by 6. Sigmoid or ReLu, defined in Section 4.2.1, are typical activation functions, although
the simplest instance, f(z) = a + [z, is a linear regression (Scheuch et al., 2023). Figure 1
illustrates two FNN models.

Figure 1: Neural network with or without a hidden layer and one output layer positioned to the
right and left, respectively.

Output Layer Output Layer
0 Hidden Layer
s ™ ™
Input Layer g ( Y, (_) Vi Input Layer

Source: Gu et al. (2020).
Note: The input layer is shown by pink circles, and the output layer is indicated by dark red circles.
Every arrow has a weight parameter attached to it. A nonlinear activation function f in the network with a
hidden layer modifies the inputs before sending them to the output.

The left panel presents the simplest neural network, which contains no hidden layers. The
5-dimensional parameter vector #, comprising an intercept and one weight parameter per
predictor, determines how each predictor signal is amplified or muted. The right panel de-

picts an example with one hidden layer that includes five units (Gu et al., 2020).

As visualised in Figure 1, the versatility of neural networks is derived from the chaining of
multiple layers. This configuration introduces considerable freedom into the network’s ar-
chitecture, where clear theoretical guidance is yet to be established. The construction of a
neural network requires, at a minimum, the specification of the number of units, the num-

ber of hidden layers, the connection structure of the units (whether dense or sparse), and
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the application of regularisation techniques to mitigate the risk of overfitting. Finally, the
learning process entails optimising the network parameters through numerical optimisation,

a task often requiring careful calibration of the learning rate (Scheuch et al., 2023).

This thesis, however, proposes an alternative to the FNN approach employed by Gu et al.
(2020). Instead, it advocates using an RNN, leveraging its capability for feedback loops
within its architecture. Supporting this suggestion, Karmiani et al. (2019) finds that the
LSTM outperforms the FNN in achieving higher accuracy and lower variance when pre-
dicting stock prices. However, Karmiani et al. (2019) notes that the LSTM requires more
computational resources than the FNN. In contrast, Naeini et al. (2010) compared stock
value predictions using both an RNN and an FNN model. They found that the FNN is more
promising in predicting stock value changes than the RNN. However, the RNN is better at

predicting the direction of the changes in the stock value.

The choice of using RNN models for excess stock return prediction in this thesis is under-
pinned by their inherent structural benefits for sequential data analysis, as highlighted by
GfG (2023). FNNs process data in a unidirectional flow, from input to output, without
feedback loops. On the other hand, RNNs have loops, allowing the output from a layer to
be fed back into the input, enabling them to maintain a form of memory. However, FNNs’
architecture is simpler and has a lower computational complexity. Therefore, it tends to

operate faster.

Despite the increase in computational cost and the findings by Naeini et al. (2010), RNNs
might offer advantages in capturing the temporal dependencies in stock data, which could
be critical for precise excess stock return forecasts. Additionally, the selection of LSTM as
the preferred RNN model is primarily due to its ability to address the issues commonly asso-
ciated with traditional RNNs, notably the vanishing and exploding gradients problems that

can hinder the learning process.

The vanishing gradients problem is characterised by the derivatives of the weights with re-
spect to the loss function approaching zero. This poses a significant challenge in training
RNNs, as vanishing gradients lead to extremely small weight updates during backpropagation
through time, an algorithm used to update the weights and optimise RNNs. Backpropagation

through time is similar to backpropagation in an FNN; however, due to the time dependency
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in RNNs and LSTMs, it is important to unroll the network through time and apply back-
propagation with time dependency (Hanu, 2021).

Conversely, the exploding gradients problem occurs when the derivatives of the weights with
respect to the loss function become excessively large. As a result, substantial weight updates
during the backpropagation through time occur, causing the network to fail to converge or
even diverge. Hence, this leads to highly unstable training of the RNN. For an in-depth
understanding of the vanishing and exploding gradients problem, please refer to the work of
Bengio et al. (1994).

The architecture of LSTM models consists of input, forget, and output gates designed to
capture and retain long-term dependencies in datasets. Based on the literature stating that
stock returns demonstrate identifiable patterns and can be explained by stock characteristics
and macroeconomic factors, this thesis suggests that the LSTM model is more effective than

FNN for predicting excess stock returns.

The LSTM architecture applied in this thesis closely follows the framework established by
Hochreiter and Schmidhuber (1997) and has proven effective in a wide range of LSTM appli-
cations, as demonstrated by Russakovsky et al. (2015), Silver et al. (2017), Wu et al. (2016),
and M. X. Chen et al. (2018).

Figure 2 provides a detailed illustration of an LSTM cell. This cell operates on a batch of
input vectors, denoted as x;, with dimensions B x I, where B signifies the batch size and
I represents the number of input features at each discrete time step ¢t = 0,1,2,.... Central
to the LSTM cell’s functionality are its input (i; € RF*#) output (o, € RP*#) and forget
gates (f; € RP*H) with H being the hidden units. These gates utilise both feed-forward and
recurrent connections to modulate the flow of information within the network. The LSTM
cell maintains two crucial memory components: The hidden state h;, of dimension B x H,
representing the short-term memory, and the internal cell state ¢; of the same dimension,

representing the long-term memory. These gates take in the current input x; and the previous
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hidden state h;_; to compute:

Z.t = U(Xtmg; + ht_1VV7;h + bz) (10)
O = U(XtWox + ht—IWoh + bo) (11>
ft = O'(Xthx + ht,1th + bf) (12)

Here, o denotes the sigmoid activation function applied element-wise, b;, b,, and by are bias
vectors of size B x H, and W., and W, are weight matrices of dimensions I x H and H x H,
respectively. These gate activations facilitate the update of the hidden and memory states

according to:

by = Wi + by 1 Wi + b, (13)
C; = ft ®cC—q + it ® tanh(ﬁt) (14)
ht = tanh(ct) ® O¢t. (15)

h, € R®* denotes the input node, and b; € R™¥ is a bias parameter. The input gate
1; determines the extent to which new data are considered via flt, while the forget gate f;
decides the proportion of the previous cell’s internal state ¢,_; € RP*# that is preserved.
® represents the Hadamard (elementwise) multiplication (Chalvatzis & Hristu-Varsakelis,
2019).

Figure 2: Detailed diagram of an LSTM cell
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-
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Source: Chalvatzis and Hristu-Varsakelis (2019).
Suppose the forget gate consistently remains at one and the input gate consistently at 0. In
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that case, the internal state of the memory cell will perpetually remain the same, transferring
unaltered to every following time step. However, the input and forget gates allow the model
to learn when to maintain this value steadily and adjust it in reaction to subsequent inputs.
This design, in practical terms, mitigates the issue of the vanishing and exploding gradients,
leading to models that are simpler to train, mainly when dealing with datasets with extensive
sequence lengths (A. Zhang et al., 2023).

Finally, the hidden state h, € RB*H is computed by applying the tanh activation function to
the internal state of the memory cell and subsequently performing elementwise multiplication
with the output gate. The tanh activation function, defined as:

et — et

tanh(z) = prpp——
elﬂ e—.T

(16)

ensures that the values of h; lie within the range of (-1, 1). While the output gate approaches
1, the internal state of the memory cell can unrestrictedly affect the following layers. Con-
versely, when the output gate approaches 0, the current memory is effectively isolated from
other network layers. This gating mechanism enables a memory cell to store information
over extended periods without immediately affecting the network’s overall state (as long as
the output gate remains close to 0). However, if the output gate shifts from accepting values
near (0 to accepting values near 1, the stored memory can abruptly impact the network at
a later time step (A. Zhang et al., 2023). Note that this thesis utilises the ReLu activation
function, detailed in Section 4.2.1, instead of the tanh activation function. This modification

shifts the range of hy values to [0, 00), while the remainder of the operations stays consistent.

In the case of deep networks composed of multiple LSTM layers, the hidden states from each
layer serve as the input for the subsequent layer. This process is articulated through a sub-
sequent application of equation (10) to (15), wherein the input variable x;, within Equations
(10)-(13) is substituted by the hidden states produced by the preceding layer (Chalvatzis &
Hristu-Varsakelis, 2019).

This thesis employs an LSTM framework for one-step-ahead predictions, implying that the
model predicts a single value for each input sequence. The sequences are constructed from
sliding windows, where each window ends with the target value that immediately follows the
inputs. Thus, the LSTM processes a sequence of numerical vectors denoted as x;_ 741, ..., 4,

where T denotes a fixed 'time window’ size of three months. Specifically, the model leverages
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data from the past three months to predict the fourth-month excess stock return.

The final LSTM layer outputs the hidden state h;, which is an x-dimensional vector where
x depends on the number of neurons in that layer. This vector is fed through a linear

fully-connected layer to produce a single prediction. The relationship can be expressed as:
Uer1 = bWy + by,

where 9,11 is the predicted excess stock return for the following month, W; is a weight matrix
with dimensions [z, 1], where z represents the number of neurons in the last LSTM layer and

1 being the number of output units in the dense layer. Lastly, b; is a scalar bias term.

The sliding window approach maximises the use of all available data for training by continu-
ously shifting the window across the dataset and using each segment of data multiple times
in slightly different contexts. Furthermore, this helps maintain the temporal order of the

data points, which is crucial for time series forecasting.

Within this thesis, the input feature vectors, x;, consist of monthly excess stock returns,
94 distinct stock characteristics, and 13 macroeconomic predictors. This set of inputs is
utilised to determine the optimal LSTM architecture, ranging from LSTM1, with a single
LSTM layer, to LSTM5, which contains five LSTM layers. Upon establishing the optimal
number of layers, this thesis employs permutation feature importance to identify the top
20 most influential features. This analysis aims to streamline the input features, reducing
them to monthly excess stock returns, 15 selected stock characteristics, and 5 macroeconomic
predictors. Subsequently, the optimal model, leveraging these 20 most important features,
is fitted and deployed for out-of-sample predictions. The methodologies underpinning this

approach, including the model fitting and prediction processes, are elaborated in Section 4.

3.3 PERMUTATION FEATURE IMPORTANCE

This thesis employs the permutation feature importance (PFI) technique, originally intro-
duced by Breiman (2001), to pinpoint the top 20 predictive features vital for forecasting
excess stock returns. This method is further endorsed by Molnar (2020) and Deotte (2021).
Moreover, Dami and Esterabi (2021) finds that combining PFI with LSTM forms a robust

tool for assessing feature importance in financial time series predictions.
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PFI determines the importance of individual features by quantifying their impact on the
model’s MSPE;, as defined in Section 4.2.4 equation (17). It operates under the principle that
the importance of a feature can be measured by calculating the increase in the MSPE, after
permuting the feature. A feature is considered 'important’ if shuffling its values increases
the MSPE, indicating that the model relies on this feature for more accurate predictions.
Conversely, a negligible change in the MSPE following a permutation suggests the feature is
relatively unimportant. This thesis employs an algorithm, detailed in Algorithm 1, to esti-
mate feature importance using the optimal LSTM model, trained exclusively on the training
data.

Algorithm 1 Permutation feature importance
1: Initialisation:

2: Load the training dataset and divide into Xy ., (training features) and Yi.i, (targets).
3: The feature set X consists of 107 features, and Y represents the target variable, excess

stock return.

4: Initialise parameters for K-fold cross-validation.

5: Model Selection:

6: Set Ngtocks 10 0.

7: while ng,qas <= 500 do

8: Load a fitted model from the optimal LSTM.

9: Increment ngioas by 1.

10: For each split generated by cross-validation:

11: Divide data into Xirain, Xvalid a0d Ytrain, Yvalid-

12:

13: Feature Importance Computation:

14: for each feature k in the feature set do

15: Calculate the mean of the k-th feature across X ain-

16: Replace the k-th feature in X .54 with its calculated mean.

17: Predict outcomes using the modified X, .9 and compute MSPE.
18: Accumulate the MSPE for the k-th feature across all stocks and splits.
19: Restore the original k-th feature values in X,q.

20: end for
21: end while

Source: Adapted from Deotte (2021).

The average increase in MSPE is computed for each feature in the training set across 500

stocks using K-fold cross-validation with the optimal LSTM structure. Subsequently, the
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features are ranked in descending order of their importance to readily identify the most

predictive features.

4  METHODOLOGY

This section presents the methodology employed in this thesis to conduct empirical asset
pricing using LSTM models. Section 4.1 begins with a description of the data, including its
sources and the methodology for preprocessing, which involves transformation and division
into training and test sets. Subsequently, Section 4.2 details the selection process for the
optimal LSTM network and its hyperparameters, explaining the rationale behind using K-
fold cross-validation to ensure the statistical reliability and validity of the model’s predictive
accuracy. Section 4.3 outlines the 10-1 portfolios and the long-short investment strategy as a
methodological approach to empirically assess the performance of the LSTM model and the
selected features. Finally, Section 4.4 depicts the framework for including transaction costs

to provide a comprehensive evaluation of the practical utility of the LSTM model.

4.1 DATA DESCRIPTION AND SOURCE

This thesis examines monthly excess stock returns for all companies listed on the NYSE,
AMEX, and NASDAQ), using data from the Center for Research in Security Prices (CRSP,
2024).! The dataset spans from 1960 to 2020, a total of 60 years, and includes approximately
3.2 million observations for excess stock returns before any transformations. The sample
comprises 24,851 stocks, with an average of 4,407 stocks per month. The dataset’s time-
frame aligns with that of Gu et al. (2020) but extends to 2020, four years beyond their study.

The data filters applied in this thesis follow the methodology of Gu et al. (2020), which
includes: (i) retaining data exclusively from the specified periods of interest, (ii) limiting the
dataset to US-listed stocks, denoted by share codes 10 and 11, and (iii) including data only

from months within the unique start and end dates.

Additionally, this thesis includes stocks priced below 5 USD, ensuring that the research find-
ings are applicable across a wider spectrum of securities. This enhances the thesis’s relevance
to both low-priced and higher-priced stocks. Moreover, excluding stocks based on their price

could introduce sample selection bias, potentially skewing the results and omitting significant

!Table 10 in the Appendix shows that the normalised ret excess variable is stationary.
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market behaviours.

This thesis utilises the one-month Treasury bill rate from Prof. Kenneth French’s finance
data library, Fama/French Factors French (2024), as a proxy for the risk-free rate. This
rate is used to calculate the individual excess returns. The dataset also includes the mar-
ket’s excess return time series, denoted as R,,; — IRy, representing the value-weighted return
of all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ.
The Fama/French factors are constructed using six value-weighted portfolios formed on size
(SMB), defined as the average return on the three small portfolios minus the average return
on the three big portfolios, and book-to-market (HML), defined as the average return on the
two value portfolios minus the average return on the two growth portfolios. These factors

are used to examine excess portfolio returns in Section 5.4.3.

Figure 3 illustrates the monthly number of securities by listing exchange from 1960 to 2020.
The NYSE listing shows a relatively stable trend with a slight increase until the mid-1990s,
followed by a modest decline into the 2020s. In contrast, the NASDAQ exhibits more volatil-
ity, with a significant surge in the number of securities in the late 1990s, peaking around
2000 before a steep decline. The AMEX shows a moderate decrease from the mid-1970s to
2020. By the end of 2020, the NYSE consisted of 2,281 stocks, the NASDAQ 1,237, and the
AMEX 145, with only one stock belonging to the Other category.

Figure 4 presents the distribution of stocks across various industries within the sample.
This is achieved by translating industry codes into descriptive industry names, following the
methodology proposed by Bali et al. (2016). The manufacturing industry emerged as the
dominant industry for most of the examined period, peaking in the late 1990s with nearly
3,000 stocks. However, a significant downturn was observed after this period, resulting in
approximately 1,000 stocks by 2020, mirroring the size of the public industry. The finance
and services industries were the second and third largest, respectively, during most of the
period. However, both industries experienced a decrease in the number of stocks after the
2000s and were smaller than the public industry by the end of 2020.
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Figure 3: Monthly number of stocks by listing exchange from 1960 to 2020
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Figure 4: Monthly number of stocks by industry from 1960 to 2020
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Following the methodology of Gu et al. (2020), this thesis employs the same 94 stock charac-
teristics derived from Green et al. (2017). These characteristics are extracted from the Com-
pustat and CRSP (2024) databases. In addition, 13 macroeconomic predictors are utilised.

Welch and Goyal (2008) provide a comprehensive reassessment of the macroeconomic indi-
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cators suggested by academic research as reliable predictors of the equity premium. The
data are hosted on Goyal (2023)’s website for reference. These features are discussed in more
detail in Section 4.1.2.

4.1.1 TRANSFORMATION AND SPLIT

The dataset, spanning 60 years, is divided into two subsets. A training subset covering
48 years (1960—2008) and a subsequent 12-year period (2009—2020) designated for out-of-

sample testing. This division corresponds to an 80/20 split.

After splitting the dataset, it is crucial for the LSTM model that each stock has enough
training data and a sufficient span for out-of-sample testing. Therefore, stocks with less than
ten years of training data and fewer than three months of testing data are excluded. How-
ever, this may raise concerns of look-ahead bias, as discussed in Section 6.1.1. This filtration
process reduces the dataset from 24,851 stocks to 2,552, leading to a decrease in the number
of excess stock return observations from approximately 3.2 million to 974,207. Despite the
reduction in observations, the results retain their generalised value, ensuring the findings’

applicability across a broad spectrum of stocks.

Excluding stocks with less than three months of testing data is necessary due to the input
requirements of the LSTM models. The input data for the LSTM model consists of two
parts: X and Y. Specifically, X comprises the excess stock returns, stock characteristics, and
macroeconomic predictors from the previous three months, whereas Y denotes the excess
stock return for the following month. The models are rigorously trained on a dataset covering
the past 48 years, which includes numerous instances of these X-Y pairs. This extensive
training enables the LSTM to effectively discern patterns and trends in the fluctuations of
excess stock returns over three-month intervals. Consequently, after being fed data from the
preceding three months, the model is adept at forecasting the excess return for the following

month.

4.1.2 STOCK CHARACTERISTICS AND MACROECONOMIC PREDICTORS

This thesis examines 94 stock characteristics, detailed in Appendix Table 8 and categorised
into four groups following the classification by Gu et al. (2020). The first group includes
variables related to recent price movements, such as short-term reversal (momlm), stock
momentum (mom12m), change in momentum (chmom), industry momentum (indmom),

highest recent return (maxret), and long-term reversal (mom36m). The second group
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comprises liquidity-related variables, including turnover and its volatility (turn, SD__turn),
logarithm of market equity (mvell), dollar trading volume (dolvol), and Amihud’s measure
of illiquidity (ill). The third group encompasses risk measures, such as overall and specific re-
turn volatility (retvol, idiovol), market beta (beta), and the square of beta (betasq). The
final group is dedicated to valuation ratios and fundamental indicators, featuring earnings-to-
price (ep), sales-to-price (sp), asset growth (agr), and the count of recent earnings increases

(nincr).

This thesis employs the same normalisation technique as Gu et al. (2020), normalising the
characteristics to a (-1,1) interval. To avoid look-ahead bias, it is crucial to obtain the mean
and standard deviation from the training set for normalising the values in the testing set.
Furthermore, this thesis follows the same assumptions as Gu et al. (2020), that monthly stock
characteristics are delayed by at most one month, quarterly with at least four months lag,
and annual with at least six months lag. To predict excess stock returns for the period ¢ + 1,
the LSTM models utilise the most recent monthly characteristics at the end of month ¢, the
most recent quarterly data by the end of month t—4, and the most recent annual data by
the end of month t—6, as well as the two preceding periods for each characteristic. Another
challenge is missing characteristics, which this thesis addresses by replacing them with the

cross-sectional median for each month and stock, respectively.

The 13 macroeconomic predictors and the excess stock returns used in this thesis are nor-
malised to a median value of zero, following the methodology of Gu et al. (2020). The
macroeconomic predi