

Faculty of Social Sciences

Corporate Finance Theory

Lecture 3
Financing under asymmetric information

Nick Vikander Department of Economics

Intended outcomes for the day:

- 1. To show how asymmetric information about project quality can affect "good" borrowers' ability to raise funds.
- 2. To explain why information asymmetries can result in negative stock market reactions when firms announce that they will raise funds.
- 3. To derive how asymmetric information can affect borrower incentives to issue equity vs debt.

Last lecture

We saw that, in a setting with credit rationing due to moral hazard, a firm looking to raise funds may:

- Turn to inside equity and outside debt
- Let investors diversity via cross-pledging between different projects
- Ex post take on excess risk (asset substitution)

FINANCING UNDER ASYMMETRIC INFORMATION

2 types of asymmetric information

among investors WINNER'S CURSE

- Issue of claims may be motivated by
 - √ insurance
 - ✓ project financing, → no liquidity need

- Asymmetry of information about > conflict of interest

 - ✓ value of assets in place,✓ prospects attached to new investment,
 - ✓ quality of collateral.

Themes:

(1) market breakdown costly signaling

levet

e.s. hut sood borrowers.

Asymmetric information may account for a number of observations, e.g.,:

- ✓ negative stock price reaction to equity issuance (and smaller reaction during booms),
- ✓ pecking-order hypothesis (issue low-information-intensity securities first),
- ✓ market timing.

Asymmetric information predicts dissipative signals (besides

lack of financing), e.g.:

- ✓ private placements,
- ✓ limited diversification,
- ✓ insufficient liquidity,
- ✓ dividend distribution,
- ✓ excess collateralization,
- ✓ underpricing.

"costly signaling"

will come a bit later in the

Privately-known-prospects model

- Wealth A = 0, investment cost I.
- Project succeeds (R) or fails (0).
- investor will have constrain Risk neutrality, LL, and zero interest rate in economy.

Two borrower types

Probability of success p (probability α)

Probability of success q (probability $1 - \alpha$)

918/m Either pR > I > qR(only good type is creditworthy) pR > qR > I (both types are creditworthy) or

$$m \equiv \alpha p + (1 - \alpha)q.$$

Symmetric information benchmark

Lenders break even on average:

$$n(R - R_{\cdot}^{G}) = I$$

$$p(R - R_b^G) = I$$

RG > RB; ie. Rg < Re; lender requires a higher repeyment for a bed priject. Le gross interest rate

Not incentive compatible under asymmetric information.

Net intest rate:
$$r = \frac{Re}{T} - 1$$

A bad borrower can profitably mimic a good borrower and earn

A bad borrower can profitably mimic a good borrower
$$qR_b^G > qR_b^B$$
 of success. The in all of success $qR_b^G > qR_b^B$ of success $qR_b^G > qR_b^B$

Asymmetric information

Recall:
$$m \equiv \alpha p + (1 - \alpha)q$$
.

- no lending (market breakdown)
- mR > I (equivalently $\alpha \geq \alpha^*$). There exists a lending contract: suffer losses from the bad
- ✓ Cross subsidy:

$$p(R-R_b) > I \text{ and } q(R-R_b) < I.$$

Overinvestment if bad borrower is not credit worthy.

Siencio where good and bad bemoves raise sunds

Break-even constraint:

or P. Re

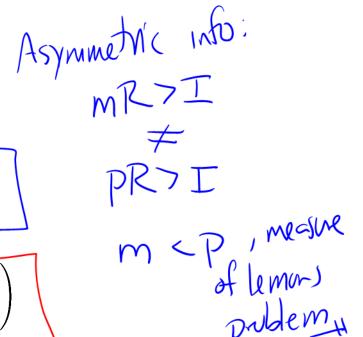
prob. success,

social

+ (1-0x) gRp = I prob. success, bad

Just: mRe = I

, where m = 27 + (1-2)g.


To move forward, find a contract, there must exist some

Ree [O, R] s.t. mRe = I, ; m<P.

Préject set mR>, I financeal. . Not set mR LI financeal.

Measure of adverse selection

$$mR > I$$
 where
$$\chi \equiv (1 - \alpha) \left(\frac{p - q}{p}\right)$$
 from the second where

Show that this is the case!

$$\chi = (1-2) \left(\frac{p-q}{p} \right)$$

$$\left[1 - (1-\alpha) \left(\frac{p-q}{p} \right) \right] pR > I$$

Compare to the condition with moral hazard:

$$: \left(p_H \left(R - \frac{B}{\Delta p} \right) \ge I \right)$$

X is a measure of the adverse sclection problem. The higher the value of X (or equivalently, the lower the value of x), the

hade to raise funds

Extension: market timing

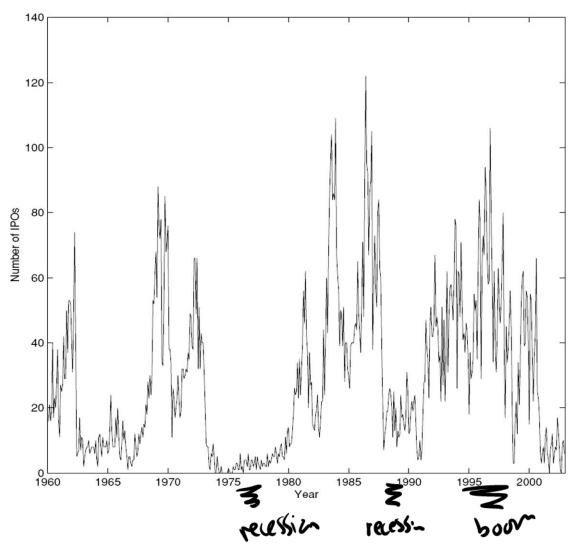
project financed mR > I

Observation: Firms tend to issue shares when stock prices are high. Possible mechanism: Adverse selection may becoming less relevant during "booms"

Assume that the probability of success shifts up by $\tau > 0$

$$\{\underline{p+\tau}\,,\,\underline{q+\tau}\}.$$

Condition for financing: $[\alpha(p+\underline{\tau})+(1-\alpha)(q+\underline{\tau})]R>I$ mr) I ,ie. $[\alpha p+(1-\omega)g]R>I$


Or equivalently:

$$[m+T]R > I$$

The better the market conditions, the easier to obtain financing.

Possible explanation for IPO waves.

"washes out" asym. into blems

Paterr Veronesi (2005)

The Journal of Finance, Volume: 60, Issue: 4, Pages: 1713-1757, First published: 12 August 2005, DOI: (10.1111/j.1540-6261.2005.00778.x)

Extension: negative stock price reaction

- ✓ Entrepreneur already has an existing project, with probability of success p or q. 1 cost I
- \checkmark Deepening investment would increase probability of success by τ

Deepening investment would increase probability of success by
$$\frac{\tau R > I}{(\alpha S + \alpha S)} = \frac{\tau R}{(\alpha S + \alpha S)}$$

Good borrower can refuse to be financed. Hence pooling only if:

$$(p+\tau)(R-R_{\ell}) \geq pR \iff \tau R \geq \left(\frac{p+\tau}{m+\tau}\right) \perp \frac{1}{p}$$

$$g_{\ell} = \frac{p+\tau}{m+\tau} + \frac{1}{p}$$

Extension: negative stock price reaction II

If a pooling equilibrium exists:

-Cross subsidization, as before. Good borrowers effectively subsidize bad borrowers.

-If the deepening investment is anticipated, then the value of shares before and after the seasoned equity offering is:

NO STOCK PRICE REACTION TO THE OFFERING

Suppose a pooling equilibrium does not exist:

$$(p+\tau)(R-R_l) < pR$$

Consider a separating equilibrium where:

- -Good borrowers do not raise funds for a deepening investment
- -Bad borrowers **do** raise funds for a deepening investment

jofi778-fig-0001-m.jpg

Extension: negative stock price reaction III

Separating equilibrium:

- -Good borrowers **do not** raise funds for a deepening investment
- -Bad borrowers do raise funds for a deepening investment

19st slide

Investor beliefs follow from Bayes' rule and borrowers' equilibrium strategies.

Thus, (not) raising funds perfectly reveals the borrower as

bad (good)

Investor break-even constraint:

 $(q+\tau)R_l^B = I$

bad priject
Probability R

$$R_l^B > R_l$$

Good borrower does not want to raise funds by

$$(p+\tau)(R-R_l^B) < (p+\tau)(R-R_l) < pR$$

jofi778-fig-0001-m.jpg

Extension: negative stock price reaction IV

Value of shares before the seasoned equity offering:

$$V_0 = \alpha[pR] + (1 - \alpha)[(q + \tau)R - I]$$

Value of shares after the seasoned equity offering:

$$V_1 = (q+\tau)R - I$$

It can be shown that $V_0 > V_1$

Conclusion:

Stock price reaction is
regative when the first
raises funds. Why that "bad pujets"
Investors informally than that "bad pujets"
are more attractive to finance; shares
are overpriced

Question

Is it possible for a separating equilibrium to exist where good borrowers (with probability of success p) raise funds for the deepening investment but bad borrowers (with probability of success q < p) do not?

- A. Yes, but only if q is sufficiently close to p
- B. Yes, but only if q is sufficiently close to 0
- C. No, because bad borrowers who mimic good borrowers by raising funds can make a positive NPV investment
- D. No, because bad borrowers find it less costly than good borrowers to relinquish a claim on their assets, which are overvalued.

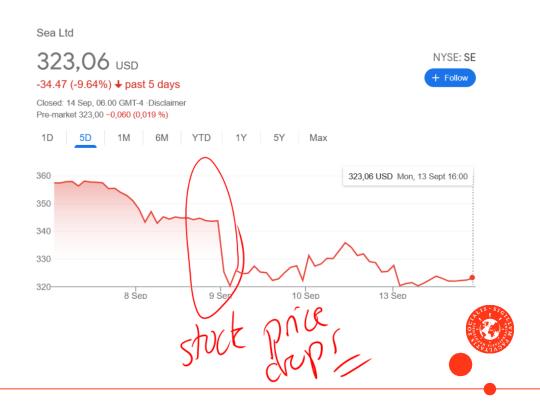
Discuss in pairs, then go to socrative com and vote for what you think is the best answer

Signaling same: "sood types" find the action (giving up a claim on their project) more costly than is bad types". I

1000

Bloomberg the Company & Its Products 🔻 | Bloomberg Terminal Demo Request | 😎 Bloomberg Anywhere Remote Login | Bloomberg Customer Support

Technology


Sea Aims to Raise \$6.3 Billion in 2021's Biggest Equity Deal

By <u>Yoolim Lee</u> and <u>Drew Singer</u> September 9, 2021, 12:17 a.m. GMT+2 *Updated on September 9, 2021, 2:58 a.m. GMT+2*

- ► Gaming and e-commerce giant is selling shares and convertibles
- ▶ The deal coincides with a resurgence of global stock sales

Decision to issue new shares often leads to a negative stock price reaction.

Consistent with our model, if decision to issue shares aims to benefit **existing** shareholders.

Entrepreneur's cash

Pecking order theory (Myers 1984)

(1) internal finance

"information sensitivity"

(2) senior debt
(3) junior debt, convertible

(4) equity ("last resort")

Pecking Order Theory II

Now assume that project failure gives R^F (salvage value) and success gives $R^S = R + R^F$.

Implies distinction between debt and equity claims.

Probability of success is p for a good borrower and q < p for a bad borrower.

Prior probability that the borrower is good given by α .

Prior mean probability of success: $m \equiv \alpha p + (1 - \alpha)q$

Assume:
$$mR^S + (1-m)R^F > I$$

Pecking Order Theory III

Reward to the borrower from success and failure: $\{R_b^S, R_b^F\}$

Conditional on borrower receiving funding, investors' breakeven condition is:

$$m(R^S - R_b^S) + (1 - m)(R^F - R_b^F) \ge I$$

The good borrower maximizes her expected payoff: $pR_b^S + (1-p)R_b^F$ subject to the breakeven condition.

At the optimum, the breakeven condition binds. Rewrite:

$$[p - (1 - \alpha)(p - q)](R^s - R_b^S) + [1 - p + (1 - \alpha)(p - q)](R^F - R_b^F) = I$$

Pecking Order Theory IV

Use breakeven constraint to rewrite good borrower utility:

$$pR_b^S + (1-p)R_b^F = [pR^S + (1-p)R^F - I] - (1-\alpha)(p-q)[(R^S - R_b^S) - (R^F - R_b^F)]$$

Decreasing in R_b^F ! Increasing in R_b^S !

Thus, the good borrower prefers the contract with $R_b^F = 0$, where R_b^S is just large enough to make the investors' breakeven constraint bind:

$$m(R^S - R_b^S) + (1 - m)R^F = I$$

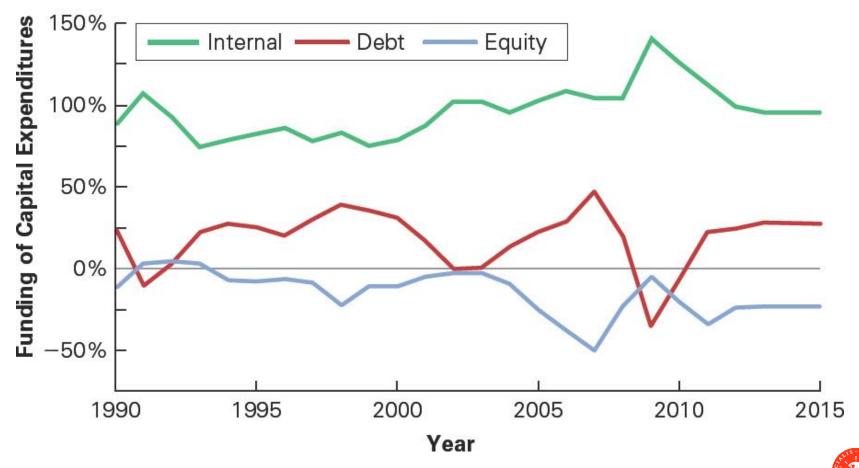
Pecking Order Theory V

Summing up

The good borrower effectively offers safe debt obligation: $D=R^F$

Along with risky equity that grants a fraction R_I/R of profits in excess of R^F in case of project success, where:

$$mR_I = I - D$$


The borrower must issue more equity when

- The adverse-selection problem is severe (low m)
- The investment cost is high (high I)

Start by issuing the claim least exposed to adverse selection, to minimize cross-subsidization with the bad borrower.

Figure 16.4 Aggregate Sources of Funding for Capital Expenditures, U.S. Corporations

Source: Federal Reserve Flow of Funds. Taken from Berk and DeMarzo, Corporate Finance, 5th Edition (2020).

Intended outcomes revisited

- To show how asymmetric information about project quality can affect "good" borrowers' ability to raise funds. Adverse selection can lead to market breakdown or cross subsidization, where good borrowers effectively subsidize bad borrowers. Investors profits from good borrowers can cover their losses from bad borrowers.
- To explain why information asymmetries can result in negative stock market reactions when firms announce that they will raise funds. Raising funds for a positive NPV investment may also reveal negative information about the firm's prospects. Firms with bad projects find it less costly to issue a claim on project returns.
- 3. To derive how asymmetric information can affect borrower incentives to issue equity vs debt. Good borrowers have an incentive to first issue the claim that is least sensitive to their private information. For example, issue safe debt before risky equity. Relation to Pecking Order Theory.

For next time

We will take a first look at "The Leverage Ratchet Effect" by Admati et al. (2018).

In this course, we will concentrate on Admatiet al. (2018)'s static model.

To prepare for Lecture 4, please watch the two videos in the module for that lecture: one about debt, the other about Admati et al. (2018)'s baseline model.

